scholarly journals Relative roles of signals upstream of AAUAAA and promoter proximity in regulation of human immunodeficiency virus type 1 mRNA 3' end formation.

1992 ◽  
Vol 12 (12) ◽  
pp. 5555-5562 ◽  
Author(s):  
J D DeZazzo ◽  
J M Scott ◽  
M J Imperiale

At least two mechanisms have been implicated in regulating poly(A) site use in human immunodeficiency virus type 1 (HIV-1): inhibition of basal signals within 500 nucleotides (nt) of the cap site, leading to specific suppression of the 5' poly(A) site, and stimulation of basal signals by long terminal repeat U3 sequences, leading to specific activation of the 3' poly(A) site. We determined the relative contributions of these mechanisms in a HeLa cell transcription/processing reaction and by transient transfection analysis. In vitro, the efficiency of basal signals is equivalent close to (270 nt) and far from (1,080 nt) the promoter and is stimulated at least 30-fold in both positions by upstream U3 sequences. In vivo, U3 sequences also enhance processing at both positions. There are two additional effects when the poly(A) site is close to the cap site: at least a 15-fold reduction in total RNA levels and a 5-fold decrease in relative levels of RNA processed at the HIV-1 site in constructs containing U3. Both effects are overcome by insertion of upstream splicing signals in an orientation-dependent manner. Splicing appears to influence poly(A)+ RNA levels by two distinct mechanisms: stabilizing nuclear transcripts and directly stimulating 3' end formation. It is proposed that upstream elements play major roles in regulating poly(A) site choice and in controlling the subsequent fate of polyadenylated RNA. The impact of these findings on mechanisms of mRNA biogenesis in the HIV-1 provirus is discussed.

1992 ◽  
Vol 12 (12) ◽  
pp. 5555-5562
Author(s):  
J D DeZazzo ◽  
J M Scott ◽  
M J Imperiale

At least two mechanisms have been implicated in regulating poly(A) site use in human immunodeficiency virus type 1 (HIV-1): inhibition of basal signals within 500 nucleotides (nt) of the cap site, leading to specific suppression of the 5' poly(A) site, and stimulation of basal signals by long terminal repeat U3 sequences, leading to specific activation of the 3' poly(A) site. We determined the relative contributions of these mechanisms in a HeLa cell transcription/processing reaction and by transient transfection analysis. In vitro, the efficiency of basal signals is equivalent close to (270 nt) and far from (1,080 nt) the promoter and is stimulated at least 30-fold in both positions by upstream U3 sequences. In vivo, U3 sequences also enhance processing at both positions. There are two additional effects when the poly(A) site is close to the cap site: at least a 15-fold reduction in total RNA levels and a 5-fold decrease in relative levels of RNA processed at the HIV-1 site in constructs containing U3. Both effects are overcome by insertion of upstream splicing signals in an orientation-dependent manner. Splicing appears to influence poly(A)+ RNA levels by two distinct mechanisms: stabilizing nuclear transcripts and directly stimulating 3' end formation. It is proposed that upstream elements play major roles in regulating poly(A) site choice and in controlling the subsequent fate of polyadenylated RNA. The impact of these findings on mechanisms of mRNA biogenesis in the HIV-1 provirus is discussed.


2008 ◽  
Vol 52 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Gadi Borkow ◽  
Humberto H. Lara ◽  
Chandice Y. Covington ◽  
Adeline Nyamathi ◽  
Jeffrey Gabbay

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can be transmitted through breast-feeding and through contaminated blood donations. Copper has potent biocidal properties and has been found to inactivate HIV-1 infectivity. The objective of this study was to determine the capacity of copper-based filters to inactivate HIV-1 in culture media. Medium spiked with high titers of HIV-1 was exposed to copper oxide powder or copper oxide-impregnated fibers or passed through copper-based filters, and the infectious viral titers before and after treatment were determined. Cell-free and cell-associated HIV-1 infectivity was inhibited when exposed to copper oxide in a dose-dependent manner, without cytotoxicity at the active antiviral copper concentrations. Similar dose-dependent inhibition occurred when HIV-1 was exposed to copper-impregnated fibers. Filtration of HIV-1 through filters containing the copper powder or copper-impregnated fibers resulted in viral deactivation of all 12 wild-type or drug-resistant laboratory or clinical, macrophage-tropic and T-cell-tropic, clade A, B, or C, HIV-1 isolates tested. Viral inactivation was not strain specific. Thus, a novel means to inactivate HIV-1 in medium has been developed. This inexpensive methodology may significantly reduce HIV-1 transmission from “mother to child” and/or through blood donations if proven to be effective in breast milk or plasma and safe for use. The successful application of this technology may impact HIV-1 transmission, especially in developing countries where HIV-1 is rampant.


2009 ◽  
Vol 83 (8) ◽  
pp. 3704-3718 ◽  
Author(s):  
Ramona Jochmann ◽  
Mathias Thurau ◽  
Susan Jung ◽  
Christian Hofmann ◽  
Elisabeth Naschberger ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) gene expression and replication are regulated by the promoter/enhancer located in the U3 region of the proviral 5′ long terminal repeat (LTR). The binding of cellular transcription factors to specific regulatory sites in the 5′ LTR is a key event in the replication cycle of HIV-1. Since transcriptional activity is regulated by the posttranslational modification of transcription factors with the monosaccharide O-linked N-acetyl-d-glucosamine (O-GlcNAc), we evaluated whether increased O-GlcNAcylation affects HIV-1 transcription. In the present study we demonstrate that treatment of HIV-1-infected lymphocytes with the O-GlcNAcylation-enhancing agent glucosamine (GlcN) repressed viral transcription in a dose-dependent manner. Overexpression of O-GlcNAc transferase (OGT), the sole known enzyme catalyzing the addition of O-GlcNAc to proteins, specifically inhibited the activity of the HIV-1 LTR promoter in different T-cell lines and in primary CD4+ T lymphocytes. Inhibition of HIV-1 LTR activity in infected T cells was most efficient (>95%) when OGT was recombinantly overexpressed prior to infection. O-GlcNAcylation of the transcription factor Sp1 and the presence of Sp1-binding sites in the LTR were found to be crucial for this inhibitory effect. From this study, we conclude that O-GlcNAcylation of Sp1 inhibits the activity of the HIV-1 LTR promoter. Modulation of Sp1 O-GlcNAcylation may play a role in the regulation of HIV-1 latency and activation and links viral replication to the glucose metabolism of the host cell. Hence, the establishment of a metabolic treatment might supplement the repertoire of antiretroviral therapies against AIDS.


2012 ◽  
Vol 93 (12) ◽  
pp. 2625-2634 ◽  
Author(s):  
Elena Capel ◽  
Glòria Martrus ◽  
Mariona Parera ◽  
Bonaventura Clotet ◽  
Miguel Angel Martínez

The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.


2006 ◽  
Vol 80 (14) ◽  
pp. 7226-7234 ◽  
Author(s):  
A. J. Frater ◽  
C. T. T. Edwards ◽  
N. McCarthy ◽  
J. Fox ◽  
H. Brown ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) genetic diversity is a major obstacle for the design of a successful vaccine. Certain viral polymorphisms encode human leukocyte antigen (HLA)-associated immune escape, potentially overcoming limited vaccine protection. Although transmission of immune escape variants has been reported, the overall extent to which this phenomenon occurs in populations and the degree to which it contributes to HIV-1 viral evolution are unknown. Selection on the HIV-1 env gene at transmission favors neutralization-sensitive variants, but it is not known to what degree selection acts on the internal HIV-1 proteins to restrict or enhance the transmission of immune escape variants. Studies have suggested that HLA class I may determine susceptibility to HIV-1 infection, but a definitive role for HLA at transmission remains unproven. Comparing populations of acute seroconverters and chronically infected patients, we found no evidence of selection acting to restrict transmission of HIV-1 variants. We found that statistical associations previously reported in chronic infection between viral polymorphisms and HLA class I alleles are not present in acute infection, suggesting that the majority of viral polymorphisms in these patients are the result of transmission rather than de novo adaptation. Using four episodes of HIV-1 transmission in which the donors and recipients were both sampled very close to the time of infection we found that, despite a transmission bottleneck, genetic variants of HIV-1 infection are transmitted in a frequency-dependent manner. As HIV-1 infections are seeded by unique donor-adapted viral variants, each episode is a highly individual antigenic challenge. Host-specific, idiosyncratic HIV-1 antigenic diversity will seriously tax the efficacy of immunization based on consensus sequences.


2007 ◽  
Vol 82 (5) ◽  
pp. 2405-2417 ◽  
Author(s):  
Vineela Chukkapalli ◽  
Ian B. Hogue ◽  
Vitaly Boyko ◽  
Wei-Shau Hu ◽  
Akira Ono

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P2 depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P2 depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P2-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P2. To examine a putative Gag interaction with PI(4,5)P2, we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P2. Using this assay, we observed that PI(4,5)P2 significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P2 for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P2 binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P2-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P2 on the membrane and that the MA basic domain mediates this interaction.


2006 ◽  
Vol 80 (4) ◽  
pp. 2051-2054 ◽  
Author(s):  
Sarah Sebastian ◽  
Elena Sokolskaja ◽  
Jeremy Luban

ABSTRACT Arsenic trioxide (As2O3) increased human immunodeficiency virus type 1 (HIV-1) infectivity when particular Homo sapiens and Cercopithecus aethiops cell lines were used as targets. Knockdown of human TRIM5α by RNA interference eliminated the As2O3 effect, demonstrating that the drug acts by modulating the activity of this retroviral restriction factor. In contrast, HIV-1 infectivity in target cell lines from other primate species (Cercopithecus tantalus, Macaca mulatta, and Aotus trivirgatus) was not increased by As2O3, despite the potent TRIM5-dependent HIV-1 restriction activity that these cells exhibit. To determine if As2O3 responsiveness is characteristic of particular TRIM5 orthologues and not others, TRIM5 cDNAs from these five primate species were transduced into cat fibroblasts, which lack endogenous HIV-1 restriction activity and, therefore, responsiveness to As2O3. In this context, the HIV-1 restriction activity conferred by all TRIM5 orthologues was largely eliminated by As2O3. The effect of As2O3 on HIV-1 restriction is thus shared by different TRIM5 orthologues but dependent on factors specific to the cell line in which TRIM5 is expressed.


2000 ◽  
Vol 74 (15) ◽  
pp. 6946-6952 ◽  
Author(s):  
Shirley Lee ◽  
H. Lee Tiffany ◽  
Lisa King ◽  
Philip M. Murphy ◽  
Hana Golding ◽  
...  

ABSTRACT To determine whether human immunodeficiency virus type 1 (HIV-1) coreceptors besides CXCR4 and CCR5 are involved in HIV-1 infection of the thymus, we focused on CCR8, a receptor for the chemokine I-309, because of its high expression in the thymus. Similar levels of CCR8 mRNA were detected in immature and mature primary human thymocytes. Consistent with this, [125I]I-309 was shown to bind specifically and with similar affinity to the surface of immature and mature human thymocytes. Fusion of human thymocytes with cells expressing HIV-1 X4 or X4R5 envelope glycoprotein was inhibited by I-309 in a dose-dependent manner. In addition, I-309 partially inhibited productive infection of human thymocytes by X4, R5, and X4R5 HIV-1 strains. Our data provide the first evidence that CCR8 functions as an HIV-1 coreceptor on primary human cells and suggest that CCR8 may contribute to HIV-1-induced thymic pathogenesis.


2009 ◽  
Vol 83 (18) ◽  
pp. 9512-9520 ◽  
Author(s):  
H. Van Marck ◽  
I. Dierynck ◽  
G. Kraus ◽  
S. Hallenberger ◽  
T. Pattery ◽  
...  

ABSTRACT The requirement for multiple mutations for protease inhibitor (PI) resistance necessitates a better understanding of the molecular basis of resistance development. The novel bioinformatics resistance determination approach presented here elaborates on genetic profiles observed in clinical human immunodeficiency virus type 1 (HIV-1) isolates. Synthetic protease sequences were cloned in a wild-type HIV-1 background to generate a large number of close variants, covering 69 mutation clusters between multi-PI-resistant viruses and their corresponding genetically closely related, but PI-susceptible, counterparts. The vast number of mutants generated facilitates a profound and broad analysis of the influence of the background on the effect of individual PI resistance-associated mutations (PI-RAMs) on PI susceptibility. Within a set of viruses, all PI-RAMs that differed between susceptible and resistant viruses were varied while maintaining the background sequence from the resistant virus. The PI darunavir was used to evaluate PI susceptibility. Single sets allowed delineation of the impact of individual mutations on PI susceptibility, as well as the influence of PI-RAMs on one another. Comparing across sets, it could be inferred how the background influenced the interaction between two mutations, in some cases even changing antagonistic relationships into synergistic ones or vice versa. The approach elaborates on patient data and demonstrates how the specific mutational background greatly influences the impact of individual mutations on PI susceptibility in clinical patterns.


Sign in / Sign up

Export Citation Format

Share Document