Quasi–Self‐Similar Evolution of the Two‐Point Correlation Function: Strongly Nonlinear Regime in Ω0< 1 Universes

2002 ◽  
Vol 566 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Tatsushi Suginohara ◽  
Atsushi Taruya ◽  
Yasushi Suto
1999 ◽  
Vol 183 ◽  
pp. 274-274
Author(s):  
Taihei Yano ◽  
Naoteru Gouda

We have investigated the scale-invariant solutions of the BBGKY equations for spatial correlation functions of cosmological density fluctuations and the mean relative peculiar velocity in the strongly nonlinear regime. It is found that the solutions for the mean relative physical velocity depend on the three-point spatial correlation function and the skewness of the velocity fields. We find that the stable condition in which the mean relative physical velocity vanishes on the virialized regions is satisfied only under the assumptions which Davis & Peebles took in there paper. It is found, however, that their assumptions may not be general in real. The power index of the two-point correlation function in the strongly nonlinear regime depends on the mean relative peculiar velocity, the three-point correlation function and the skewness. If self-similar solutions exist, then the power index in the strongly nonlinear regime is related to the power index of the initial power spectrum and its relation depends on the three-point correlation function and the skewness through the mean relative peculiar velocity. We also investigate stability of the solutions of the BBGKY equations for two-point spatial correlation functions. In the case that the background skewness is equal to 0, we found that there is no local instability in the strongly non-linear regime.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
D. Chicherin ◽  
J. M. Henn ◽  
E. Sokatchev ◽  
K. Yan

Abstract We present a method for calculating event shapes in QCD based on correlation functions of conserved currents. The method has been previously applied to the maximally supersymmetric Yang-Mills theory, but we demonstrate that supersymmetry is not essential. As a proof of concept, we consider the simplest example of a charge-charge correlation at one loop (leading order). We compute the correlation function of four electromagnetic currents and explain in detail the steps needed to extract the event shape from it. The result is compared to the standard amplitude calculation. The explicit four-point correlation function may also be of interest for the CFT community.


2011 ◽  
Vol 417 (3) ◽  
pp. 2206-2215 ◽  
Author(s):  
A. P. Cooper ◽  
S. Cole ◽  
C. S. Frenk ◽  
A. Helmi

2013 ◽  
Vol 21 ◽  
pp. 138-139
Author(s):  
SHOTARO SHIBA

The AGT-W relation is a conjecture of the nontrivial duality between 4-dim quiver gauge theory and 2-dim conformal field theory. We verify a part of this conjecture for all the cases of quiver gauge groups by studying on the property of 3-point correlation function of conformal theory. We also mention the relation to [Formula: see text] algebra as one of the promising direction towards the proof of the remaining part.


2012 ◽  
Vol 6 (6) ◽  
pp. 4673-4693 ◽  
Author(s):  
H. Löwe ◽  
F. Riche ◽  
M. Schneebeli

Abstract. Finding relevant microstructural parameters beyond the density is a longstanding problem which hinders the formulation of accurate parametrizations of physical properties of snow. Towards a remedy we address the effective thermal conductivity tensor of snow via known anisotropic, second-order bounds. The bound provides an explicit expression for the thermal conductivity and predicts the relevance of a microstructural anisotropy parameter Q which is given by an integral over the two-point correlation function and unambiguously defined for arbitrary snow structures. For validation we compiled a comprehensive data set of 167 snow samples. The set comprises individual samples of various snow types and entire time series of metamorphism experiments under isothermal and temperature gradient conditions. All samples were digitally reconstructed by micro-computed tomography to perform microstructure-based simulations of heat transport. The incorporation of anisotropy via Q considerably reduces the root mean square error over the usual density-based parametrization. The systematic quantification of anisotropy via the two-point correlation function suggests a generalizable route to incorporate microstructure into snowpack models. We indicate the inter-relation of the conductivity to other properties and outline a potential impact of Q on dielectric constant, permeability and adsorption rate of diffusing species in the pore space.


Sign in / Sign up

Export Citation Format

Share Document