scholarly journals TOWARDS THE PROOF OF AGT-W RELATION: TODA 3-POINT FUNCTION AND ${\mathcal W}_{1+\infty}$ ALGEBRA

2013 ◽  
Vol 21 ◽  
pp. 138-139
Author(s):  
SHOTARO SHIBA

The AGT-W relation is a conjecture of the nontrivial duality between 4-dim quiver gauge theory and 2-dim conformal field theory. We verify a part of this conjecture for all the cases of quiver gauge groups by studying on the property of 3-point correlation function of conformal theory. We also mention the relation to [Formula: see text] algebra as one of the promising direction towards the proof of the remaining part.

1990 ◽  
Vol 05 (29) ◽  
pp. 2413-2422 ◽  
Author(s):  
KENICHIRO AOKI

The superspace formulation of the super-WZW model is used to obtain an explicit expression for the four-point correlation function on the super-sphere given that of the Bose case, for general groups. The correlation function is compared with that of the free super-scalar field theory with background charge and is shown to have an identical structure for the case of SU(2).


1996 ◽  
Vol 11 (07) ◽  
pp. 1217-1252 ◽  
Author(s):  
MASAO JINZENJI ◽  
MASARU NAGURA

We consider an (N–2)-dimensional Calabi-Yau manifold which is defined as the zero locus of the polynomial of degree N (of the Fermat type) in CPN−1 and its mirror manifold. We introduce an (N–2)-point correlation function (generalized Yukawa coupling) and evaluate it both by solving the Picard-Fuchs equation for period integrals in the mirror manifold and by explicitly calculating the contribution of holomorphic maps of degree 1 to the Yukawa coupling in the Calabi-Yau manifold using the method of algebraic geometry. In enumerating the holomorphic curves in the general-dimensional Calabi-Yau manifolds, we extend the method of counting rational curves on the Calabi-Yau three-fold using the Shubert calculus on Gr (2, N). The agreement of the two calculations for the (N–2)-point function establishes “the mirror symmetry at the correlation function level” in the general-dimensional case.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Parijat Dey ◽  
Tobias Hansen ◽  
Mykola Shpot

Abstract We show that in boundary CFTs, there exists a one-to-one correspondence between the boundary operator expansion of the two-point correlation function and a power series expansion of the layer susceptibility. This general property allows the direct identification of the boundary spectrum and expansion coefficients from the layer susceptibility and opens a new way for efficient calculations of two-point correlators in BCFTs. To show how it works we derive an explicit expression for the correlation function 〈ϕiϕi〉 of the O(N) model at the extraordinary transition in 4 − ϵ dimensional semi-infinite space to order O(ϵ). The bulk operator product expansion of the two-point function gives access to the spectrum of the bulk CFT. In our example, we obtain the averaged anomalous dimensions of scalar composite operators of the O(N) model to order O(ϵ2). These agree with the known results both in ϵ and large-N expansions.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Jae-Hyuk Oh

Abstract We explore conformally coupled scalar theory in AdS6 extensively and their classical solutions by employing power expansion order by order in its self-interaction coupling λ. We describe how we get the classical solutions by diagrammatic ways which show general rules constructing the classical solutions. We study holographic correlation functions of scalar operator deformations to a certain 5-dimensional conformal field theory where the operators share the same scaling dimension ∆ = 3, from the classical solutions. We do not assume any specific form of the micro Lagrangian density of the 5-dimensional conformal field theory. For our solutions, we choose a scheme where we remove co-linear divergences of momenta along the AdS boundary directions which frequently appear in the classical solutions. This shows clearly that the holographic correlation functions are free from the co-linear divergences. It turns out that this theory provides correct conformal 2- and 3- point functions of the ∆ = 3 scalar operators as expected in previous literature. It makes sense since 2- and 3- point functions are determined by global conformal symmetry not being dependent on the details of the conformal theory. We also get 4-point function from this holographic model. In fact, it turns out that the 4-point correlation function is not conformal because it does not satisfy the special conformal Ward identity although it does dilation Ward identity and respect SO(5) rotation symmetry. However, in the co-linear limit that all the external momenta are in a same direction, the 4-point function is conformal which means that it satisfy the special conformal Ward identity. We inspect holographic n-point functions of this theory which can be obtained by employing a certain Feynman-like rule. This rule is a construction of n-point function by connecting l-point functions each other where l < n. In the co-linear limit, these n-point functions reproduce the conformal n-point functions of ∆ = 3 scalar operators in d = 5 Euclidean space addressed in arXiv:2001.05379.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Mirko Serino

Abstract We present an explicit momentum space computation of the four-point function of the energy-momentum tensor in 4 spacetime dimensions for the free and conformally invariant theory of a scalar field. The result is obtained by explicit evaluation of the Feynman diagrams by tensor reduction. We work by embedding the scalar field theory in a gravitational background consistently with conformal invariance in order to derive all the terms the correlator consists of and all the Ward identities implied by the requirements of general covariance and anomalous Weyl symmetry. We test all these identities numerically in several kinematic configurations. Mathematica notebooks detailing the step-by-step computation are made publicly available through a GitHub repository (https://github.com/mirkos86/4-EMT-correlation-function-in-a-4d-CFT.). To the best of our knowledge, this is the first explicit result for the four-point correlation function of the energy-momentum tensor in a conformal and non supersymmetric field theory which is readily numerically evaluable in any kinematic configuration.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Carlos Cardona ◽  
Cynthia Keeler ◽  
William Munizzi

Abstract In this work we apply the lightcone bootstrap to a four-point function of scalars in two-dimensional conformal field theory. We include the entire Virasoro symmetry and consider non-rational theories with a gap in the spectrum from the vacuum and no conserved currents. For those theories, we compute the large dimension limit (h/c ≫ 1) of the OPE spectral decomposition of the Virasoro vacuum. We then propose a kernel ansatz that generalizes the spectral decomposition beyond h/c ≫ 1. Finally, we estimate the corrections to the OPE spectral densities from the inclusion of the lightest operator in the spectrum.


Sign in / Sign up

Export Citation Format

Share Document