Cosmic Rays from Gamma-Ray Bursts in the Galaxy

2005 ◽  
Vol 628 (1) ◽  
pp. L21-L24 ◽  
Author(s):  
Charles D. Dermer ◽  
Jeremy M. Holmes
Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


2008 ◽  
Vol 17 (09) ◽  
pp. 1319-1332
Author(s):  
PETER MÉSZÁROS

Gamma-ray bursts are capable of accelerating cosmic rays up to GZK energies Ep ~ 1020 eV, which can lead to a flux at Earth comparable to that observed by large EAS arrays such as Auger. The semi-relativistic outflows inferred in GRB-related hypernovae are also likely sources of somewhat lower energy cosmic rays. Leptonic processes, such as synchrotron and inverse Compton, as well as hadronic processes, can lead to GeV-TeV gamma-rays measurable by GLAST, AGILE, or ACTs, providing useful probes of the burst physics and model parameters. Photo-meson interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which will be probed with forthcoming experiments such as IceCube, ANITA and KM3NeT. This would provide information about the fundamental interaction physics, the acceleration mechanism, the nature of the sources and their environment.


2005 ◽  
Author(s):  
Jason X. Prochaska ◽  
J.S. Bloom ◽  
H.-W. Chen ◽  
R.J. Foley ◽  
D.A. Perley ◽  
...  

Author(s):  
Joshua S. Bloom

This chapter focuses on how gamma-ray bursts (GRBs) are emerging as unique tools in the study of broad areas of astronomy and physics by virtue of their special properties. The unassailable fact about GRBs that makes them such great probes is that they are fantastically bright and so can be seen to the farthest reaches of the observable Universe. In parallel with the ongoing study of GRB events and progenitors, new lines of inquiry have burgeoned: using GRBs as unique probes of the Universe in ways that are almost completely divorced from the nature of GRBs themselves. Topics discussed include studies of gas, dust, and galaxies; the history of star formation; measuring reionization and the first objects in the universe; neutrinos, gravitational waves, and cosmic rays; quantum gravity and the expansion of the universe; and the future of GRBs.


1992 ◽  
Vol 388 ◽  
pp. 164 ◽  
Author(s):  
Arnon Dar ◽  
Ben Z. Kozlovsky ◽  
Shmuel Nussinov ◽  
Reuven Ramaty

Sign in / Sign up

Export Citation Format

Share Document