scholarly journals Spectra of High-Redshift Type Ia Supernovae and a Comparison with Their Low-Redshift Counterparts

2005 ◽  
Vol 130 (6) ◽  
pp. 2788-2803 ◽  
Author(s):  
I. M. Hook ◽  
D. A. Howell ◽  
G. Aldering ◽  
R. Amanullah ◽  
M. S. Burns ◽  
...  
2019 ◽  
Vol 625 ◽  
pp. A15 ◽  
Author(s):  
I. Tutusaus ◽  
B. Lamine ◽  
A. Blanchard

Context. The cosmological concordance model (ΛCDM) is the current standard model in cosmology thanks to its ability to reproduce the observations. The first observational evidence for this model appeared roughly 20 years ago from the type-Ia supernovae (SNIa) Hubble diagram from two different groups. However, there has been some debate in the literature concerning the statistical treatment of SNIa, and their stature as proof of cosmic acceleration. Aims. In this paper we relax the standard assumption that SNIa intrinsic luminosity is independent of redshift, and examine whether it may have an impact on our cosmological knowledge and more precisely on the accelerated nature of the expansion of the universe. Methods. To maximise the scope of this study, we do not specify a given cosmological model, but we reconstruct the expansion rate of the universe through a cubic spline interpolation fitting the observations of the different cosmological probes: SNIa, baryon acoustic oscillations (BAO), and the high-redshift information from the cosmic microwave background (CMB). Results. We show that when SNIa intrinsic luminosity is not allowed to vary as a function of redshift, cosmic acceleration is definitely proven in a model-independent approach. However, allowing for redshift dependence, a nonaccelerated reconstruction of the expansion rate is able to fit, at the same level of ΛCDM, the combination of SNIa and BAO data, both treating the BAO standard ruler rd as a free parameter (not entering on the physics governing the BAO), and adding the recently published prior from CMB observations. We further extend the analysis by including the CMB data. In this case we also consider a third way to combine the different probes by explicitly computing rd from the physics of the early universe, and we show that a nonaccelerated reconstruction is able to nicely fit this combination of low- and high-redshift data. We also check that this reconstruction is compatible with the latest measurements of the growth rate of matter perturbations. We finally show that the value of the Hubble constant (H0) predicted by this reconstruction is in tension with model-independent measurements. Conclusions. We present a model-independent reconstruction of a nonaccelerated expansion rate of the universe that is able to fit all the main background cosmological probes nicely. However, the predicted value of H0 is in tension with recent direct measurements. Our analysis points out that a final reliable and consensual value for H0 is critical to definitively prove cosmic acceleration in a model-independent way.


2013 ◽  
Vol 557 ◽  
pp. A64 ◽  
Author(s):  
Vincenzo Salzano ◽  
Steven A. Rodney ◽  
Irene Sendra ◽  
Ruth Lazkoz ◽  
Adam G. Riess ◽  
...  

2011 ◽  
Vol 727 (2) ◽  
pp. 107 ◽  
Author(s):  
S. González-Gaitán ◽  
K. Perrett ◽  
M. Sullivan ◽  
A. Conley ◽  
D. A. Howell ◽  
...  

2006 ◽  
Vol 637 (1) ◽  
pp. 427-438 ◽  
Author(s):  
Brian J. Barris ◽  
John L. Tonry

2012 ◽  
Vol 8 (S289) ◽  
pp. 327-327
Author(s):  
Brian P. Schmidt

AbstractType Ia supernovae (SNe Ia) are among cosmology's most useful tools for measuring extragalactic distances. Their intrinsic brightness, MV=−19.2 mag, and precision, σ=0.12 mag, make for a unique combination to precisely probe cosmic expansion from the nearby to the high-redshift Universe. I describe the current state of the art for measuring distances to SNe Ia—focusing on the current challenges which ultimately limit their precision—as well as prospects for further refinement. I also highlight cosmological applications where they have been especially valuable, and briefly review some future projects which plan to exploit SNe Ia.


2018 ◽  
Vol 614 ◽  
pp. A71 ◽  
Author(s):  
J. Nordin ◽  
G. Aldering ◽  
P. Antilogus ◽  
C. Aragon ◽  
S. Bailey ◽  
...  

Context. Observations of type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully understood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims. Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods. We divide the U-band spectrum into four wavelength regions λ(uNi), λ(uTi), λ(uSi) and λ(uCa). Two of these span the Ca H&K λλ 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results. The flux of the uTi feature is an extremely sensitive temperature/luminosity indicator, standardizing the SN peak luminosity to 0.116 ± 0.011 mag root mean square (RMS). A traditional SALT2.4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. Early U-band spectra can be used to probe the Ni+Co distribution in the ejecta, thus offering a rare window into the source of light curve power. The uCa flux further improves standardization, yielding a 0.086 ± 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach χ2∕dof ~ 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe.


2015 ◽  
Vol 24 (14) ◽  
pp. 1530029 ◽  
Author(s):  
Xiangcun Meng ◽  
Yan Gao ◽  
Zhanwen Han

Type Ia supernovae (SNe Ia) luminosities can be corrected in order to render them useful as standard candles that are able to probe the expansion history of the universe. This technique was successfully applied to discover the present acceleration of the universe. As the number of SNe Ia observed at high redshift increases and analysis techniques are perfected, people aim to use this technique to probe the equation-of-state of the dark energy (EOSDE). Nevertheless, the nature of SNe Ia progenitors remains controversial and concerns persist about possible evolution effects that may be larger and harder to characterize than the more obvious statistical uncertainties.


Sign in / Sign up

Export Citation Format

Share Document