scholarly journals Type Ia supernovae as extragalactic distance indicators

2012 ◽  
Vol 8 (S289) ◽  
pp. 327-327
Author(s):  
Brian P. Schmidt

AbstractType Ia supernovae (SNe Ia) are among cosmology's most useful tools for measuring extragalactic distances. Their intrinsic brightness, MV=−19.2 mag, and precision, σ=0.12 mag, make for a unique combination to precisely probe cosmic expansion from the nearby to the high-redshift Universe. I describe the current state of the art for measuring distances to SNe Ia—focusing on the current challenges which ultimately limit their precision—as well as prospects for further refinement. I also highlight cosmological applications where they have been especially valuable, and briefly review some future projects which plan to exploit SNe Ia.

2005 ◽  
Vol 130 (6) ◽  
pp. 2788-2803 ◽  
Author(s):  
I. M. Hook ◽  
D. A. Howell ◽  
G. Aldering ◽  
R. Amanullah ◽  
M. S. Burns ◽  
...  

2019 ◽  
Vol 625 ◽  
pp. A15 ◽  
Author(s):  
I. Tutusaus ◽  
B. Lamine ◽  
A. Blanchard

Context. The cosmological concordance model (ΛCDM) is the current standard model in cosmology thanks to its ability to reproduce the observations. The first observational evidence for this model appeared roughly 20 years ago from the type-Ia supernovae (SNIa) Hubble diagram from two different groups. However, there has been some debate in the literature concerning the statistical treatment of SNIa, and their stature as proof of cosmic acceleration. Aims. In this paper we relax the standard assumption that SNIa intrinsic luminosity is independent of redshift, and examine whether it may have an impact on our cosmological knowledge and more precisely on the accelerated nature of the expansion of the universe. Methods. To maximise the scope of this study, we do not specify a given cosmological model, but we reconstruct the expansion rate of the universe through a cubic spline interpolation fitting the observations of the different cosmological probes: SNIa, baryon acoustic oscillations (BAO), and the high-redshift information from the cosmic microwave background (CMB). Results. We show that when SNIa intrinsic luminosity is not allowed to vary as a function of redshift, cosmic acceleration is definitely proven in a model-independent approach. However, allowing for redshift dependence, a nonaccelerated reconstruction of the expansion rate is able to fit, at the same level of ΛCDM, the combination of SNIa and BAO data, both treating the BAO standard ruler rd as a free parameter (not entering on the physics governing the BAO), and adding the recently published prior from CMB observations. We further extend the analysis by including the CMB data. In this case we also consider a third way to combine the different probes by explicitly computing rd from the physics of the early universe, and we show that a nonaccelerated reconstruction is able to nicely fit this combination of low- and high-redshift data. We also check that this reconstruction is compatible with the latest measurements of the growth rate of matter perturbations. We finally show that the value of the Hubble constant (H0) predicted by this reconstruction is in tension with model-independent measurements. Conclusions. We present a model-independent reconstruction of a nonaccelerated expansion rate of the universe that is able to fit all the main background cosmological probes nicely. However, the predicted value of H0 is in tension with recent direct measurements. Our analysis points out that a final reliable and consensual value for H0 is critical to definitively prove cosmic acceleration in a model-independent way.


1999 ◽  
Vol 183 ◽  
pp. 68-68
Author(s):  
Koichi Iwamoto ◽  
Ken'Ichi Nomoto

The large luminosity (MV ≈ −19 ∼ −20) and the homogeneity in light curves and spectra of Type Ia supernovae(SNe Ia) have led to their use as distance indicators ultimately to determine the Hubble constant (H0). However, an increasing number of the observed samples from intermediate- and high-z (z ∼ 0.1 − 1) SN Ia survey projects(Hamuy et al. 1996, Perlmutter et al. 1997) have shown that there is a significant dispersion in the maximum brightness (∼ 0.4 mag) and the brighter-slower correlation between the brightness and the postmaximum decline rate, which was first pointed out by Phillips(1993). By taking the correlation into account, Hamuy et al.(1996) gave an estimate of H0 within the error bars half as much as previous ones.


2013 ◽  
Vol 557 ◽  
pp. A64 ◽  
Author(s):  
Vincenzo Salzano ◽  
Steven A. Rodney ◽  
Irene Sendra ◽  
Ruth Lazkoz ◽  
Adam G. Riess ◽  
...  

2012 ◽  
Vol 10 (H16) ◽  
pp. 17-17
Author(s):  
Brian Schmidt

AbstractType Ia supernovae remain one of Astronomy's most precise tools for measuring distances in the Universe. I describe the cosmological application of these stellar explosions, and chronicle how they were used to discover an accelerating Universe in 1998 - an observation which is most simply explained if more than 70% of the Universe is made up of some previously undetected form of ‘Dark Energy’. Over the intervening 13 years, a variety of experiments have been completed, and even more proposed to better constrain the source of the acceleration. I review the range of experiments, describing the current state of our understanding of the observed acceleration, and speculate about future progress in understanding Dark Energy.


2010 ◽  
Vol 410 (2) ◽  
pp. 1262-1282 ◽  
Author(s):  
E. S. Walker ◽  
I. M. Hook ◽  
M. Sullivan ◽  
D. A. Howell ◽  
P. Astier ◽  
...  

2007 ◽  
Vol 466 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J. Guy ◽  
P. Astier ◽  
S. Baumont ◽  
D. Hardin ◽  
R. Pain ◽  
...  

2019 ◽  
Vol 490 (3) ◽  
pp. 3882-3907 ◽  
Author(s):  
Benjamin E Stahl ◽  
WeiKang Zheng ◽  
Thomas de Jaeger ◽  
Alexei V Filippenko ◽  
Andrew Bigley ◽  
...  

ABSTRACT We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (3 SN 1991bg-like, 3 SN 1991T-like, 4 SNe Iax, 2 peculiar, and 3 super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 d, and the median first observed epoch is ∼4.6 d before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our data set. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardizing SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.


2011 ◽  
Vol 7 (S281) ◽  
pp. 32-33
Author(s):  
M. L. Pumo ◽  
L. Zampieri

AbstractUsing our new general-relativistic, radiation hydrodynamics, Lagrangian code, we computed a rather extended grid of hydrogen-rich core-collapse supernovae (CC-SNe) models and explored the potentials of their “standardization” as distance indicators. We discuss the properties of some calibrations previously reported in the literature, and present new correlations based on the behavior of the light curve that can be employed for calibrating hydrogen-rich CC-SNe using only photometric data.


Sign in / Sign up

Export Citation Format

Share Document