Determination of the Magnetic Field Vector via the Hanle and Zeeman Effects in the Heiλ10830 Multiplet: Evidence for Nearly Vertical Magnetic Fields in a Polar Crown Prominence

2006 ◽  
Vol 642 (1) ◽  
pp. 554-561 ◽  
Author(s):  
L. Merenda ◽  
J. Trujillo Bueno ◽  
E. Landi Degl’Innocenti ◽  
M. Collados
Solar Physics ◽  
1994 ◽  
Vol 154 (2) ◽  
pp. 231-260 ◽  
Author(s):  
V�ronique Bommier ◽  
Egidio Landi Degl'Innocenti ◽  
Jean-Louis Leroy ◽  
Sylvie Sahal-Br�chot

2015 ◽  
Vol 220-221 ◽  
pp. 355-360
Author(s):  
Michał Nowicki ◽  
Roman Szewczyk

This paper presents application of magnetovision scanning system for detection of dangerous objects in weak magnetic fields. Measurement system was developed to study the magnetic field vector distributions. The measurements of the Earth’s field disturbances caused by dangerous ferromagnetic objects were carried out. The ability for passive detection of hidden dangerous objects and determine their location was demonstrated.


2013 ◽  
Vol 8 (S300) ◽  
pp. 101-111
Author(s):  
Bruce W. Lites

AbstractProminences owe their existence to the presence of magnetic fields in the solar corona. The magnetic field determines their geometry and is crucial to their stability, energetics, and dynamics. This review summarizes techniques for measurement of the magnetic field vector in prominences. New techniques for inversions of full Stokes spectro-polarimetry, incorporating both the Zeeman and Hanle mechanisms for generation and modification of polarization, are now at the forefront. Also reviewed are measurements of the magnetic fields in the photosphere below prominences, and how they may be used to infer the field geometry in and surrounding the prominence itself.


2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542041
Author(s):  
Yujie Qin ◽  
Yiyun Lu

In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in [Formula: see text]–[Formula: see text] plane, the magnetic field component Hz which is along the [Formula: see text]-axis can be observed interior the HTS bulk.


2016 ◽  
Vol 699 ◽  
pp. 31-36 ◽  
Author(s):  
Eduard Chirila ◽  
Ionel Chirica ◽  
Doina Boazu ◽  
Elena Felicia Beznea

The paper addresses the study of the damping characteristics estimation and behaviour of the magnetorheological elastomers (MREs) in the absence of magnetic field. This type of material actively changes the size, internal structure and viscoelastic characteristics under the external influences. These particular composite materials whose characteristics can vary in the presence of a magnetic fields are known as smart materials. The feature which causes the variation of properties in magnetic fields is explained by the existence of polarized particles which change the material form by energy absorbing. Damping is a special characteristic that influences the vibratory of the mechanical system. As an effect of this property is the reducing of the vibration amplitudes by dissipating the energy stored during the vibratory moving. The main characteristic that is based on the determination of the damping coefficient is the energy loss, which is the subject of the present paper. Before to start the characteristics determination in the presence of the magnetic field, it is necessary to study these characteristics in the absence of magnetic field. The MRE specimens have been manufactured and tested under the light conditions (non magnetic field). A special experimental test rig was built to investigate the response of the MRE specimens under the charging force. The experimental results show that the loss energy of the MRE specimen can be determined from the charging-discharging curves versus displacement. The results of the MRE specimen are presented in this paper: MRE with feromagnetic particles not exposed in magnetic field during fabrication.


Sign in / Sign up

Export Citation Format

Share Document