magnetic field vector
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 923 (1) ◽  
pp. 84
Author(s):  
Ana Belén Griñón-Marín ◽  
Adur Pastor Yabar ◽  
Yang Liu ◽  
J. Todd Hoeksema ◽  
Aimee Norton

Abstract A spectral line inversion code, Very Fast Inversion of the Stokes Vector (VFISV), has been used since 2010 May to infer the solar atmospheric parameters from the spectropolarimetric observations taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. The magnetic filling factor, the fraction of the surface with a resolution element occupied by magnetic field, is set to have a constant value of 1 in the current version of VFISV. This report describes an improved inversion strategy for the spectropolarimetric data observed with HMI for magnetic field strengths of intermediate values in areas spatially not fully resolved. The VFISV inversion code has been modified to enable inversion of the Stokes profiles with two different components: one magnetic and one nonmagnetic. In this scheme, both components share the atmospheric components except for the magnetic field vector. In order to determine whether the new strategy is useful, we evaluate the inferred parameters inverted with one magnetic component (the original version of the HMI inversion) and with two components (the improved version) using a Bayesian analysis. In pixels with intermediate magnetic field strengths (e.g., plages), the new version provides statistically significant values of filling fraction and magnetic field vector. Not only does the fitting of the Stokes profile improve, but also the inference of the magnetic parameters and line-of-sight velocity are obtained uniquely. The new strategy is also proven to be effective for mitigating the anomalous hemispheric bias in the east–west magnetic field component in moderate field regions.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Junichi Shiogai ◽  
Kohei Fujiwara ◽  
Tsutomu Nojima ◽  
Atsushi Tsukazaki

AbstractSmart society is forthcoming with a rapid development in the automation of electric appliances requiring abundant sensors. One of the key sensors is a three-dimensional magnetometer for detecting the motion of objects, which is usually driven by cooperative multiple sensors on three orthogonal planes. Here, we demonstrate the fundamental operation of a three-dimensional magnetometer based on a simple Fe-Sn heterostructure Hall device in a planar geometry. Polar coordinates of the magnetic-field vector are uniquely determined by the combination of the sizable anomalous Hall effect, the anisotropic magnetoresistance, and the unidirectional magnetoresistance. Thanks to the ferromagnetic topological features in the Fe-Sn heterostructure, the above-mentioned device overcomes the limitation of conventional semiconductor devices and is highly sensitive even at room temperature. The compact planar geometry will be particularly useful in versatile electrical applications requiring a low-cost three-dimensional magnetometer with space- and energy-saving features.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6450
Author(s):  
Sharanabasaweshwara Asundi ◽  
Norman Fitz-Coy ◽  
Haniph Latchman

Pico- and nano-satellites, due to their form factor and size, are limited in accommodating multiple or redundant attitude sensors. For such satellites, Murrell’s implementation of the extended Kalman filter (EKF) can be exploited to accommodate multiple sensor configurations from a set of non redundant attitude sensors. The paper describes such an implementation involving a sun sensor suite and a magnetometer as attitude sensors. The implementation exploits Murrell’s EKF to enable three sensor configurations, which can be operationally commanded, for satellite attitude estimation. Among the three attitude estimation schemes, (i) sun sensor suite and magnetometer, (ii) magnetic field vector and its time derivative and (iii) magnetic field vector, it is shown that the third configuration is better suited for attitude estimation in terms of precision and accuracy, but can consume more time to converge than the other two.


2020 ◽  
Vol 645 ◽  
pp. A1
Author(s):  
G. J. M. Vissers ◽  
S. Danilovic ◽  
J. de la Cruz Rodríguez ◽  
J. Leenaarts ◽  
R. Morosin ◽  
...  

Context. Obtaining an accurate measurement of magnetic field vector in the solar atmosphere is essential for studying changes in field topology during flares and reliably modelling space weather. Aims. We tackle this problem by applying various inversion methods to a confined X2.2 flare that occurred in NOAA AR 12673 on 6 September 2017 and comparing the photospheric and chromospheric magnetic field vector with the results of two numerical models of this event. Methods. We obtained the photospheric magnetic field from Milne-Eddington and (non-)local thermal equilibrium (non-LTE) inversions of Hinode SOT/SP Fe I 6301.5 Å and 6302.5 Å. The chromospheric field was obtained from a spatially regularised weak-field approximation (WFA) and non-LTE inversions of Ca II 8542 Å observed with CRISP at the Swedish 1 m Solar Telescope. We investigated the field strengths and photosphere-to-chromosphere shear in the field vector. Results. The LTE- and non-LTE-inferred photospheric magnetic field components are strongly correlated across several optical depths in the atmosphere, with a tendency towards a stronger field and higher temperatures in the non-LTE inversions. For the chromospheric field, the non-LTE inversions correlate well with the spatially regularised WFA, especially in terms of the line-of-sight field strength and field vector orientation. The photosphere exhibits coherent strong-field patches of over 4.5 kG, co-located with similar concentrations exceeding 3 kG in the chromosphere. The obtained field strengths are up to two to three times higher than in the numerical models, while the photosphere-to-chromosphere shear close to the polarity inversion line is more concentrated and structured. Conclusions. In the photosphere, the assumption of LTE for Fe I line formation does not yield significantly different magnetic field results in comparison to the non-LTE case, while Milne-Eddington inversions fail to reproduce the magnetic field vector orientation where Fe I is in emission. In the chromosphere, the non-LTE-inferred field is excellently approximated by the spatially regularised WFA. Our inversions confirm the locations of flux rope footpoints that have been predicted by numerical models. However, pre-processing and lower spatial resolution lead to weaker and smoother field in the models than what our data indicate. This highlights the need for higher spatial resolution in the models to better constrain pre-eruptive flux ropes.


Author(s):  
A. T. Tarlanov ◽  
Z. M. Kurbanismailov

The paper shows the approach and the result of taking into account the mutual influence of on-board subsystems of a complex technical object along the DC power supply circuits. Technical objects are understood as a mobile, energy-intensive vehicle, such as an aircraft, a surface or submarine vessel, or a railway locomotive with strong magnetic fields. The aim of the work is to create a simple and intuitive tool for mathematical modeling of the magnetic field vector at an arbitrarily specified observation point. The task is being solved in order to improve the accuracy of magnetic measurements on board, in particular, in navigation problems. On-board DC networks are considered, to which the approach of mathematical modeling is applied. The disadvantages of commercial programs of a similar purpose are noted. The binding of the objects under consideration to the general coordinate system is described. An analytical algorithm for calculating the magnetic field vector from the on-board cable network with a pronounced 3D trajectory is shown. Examples of visualization of the simulation results are given. An algorithm for calculating the induction vector based on the Biot-Savard law is considered. The algorithm for the analytical solution of the problem is described in detail. A specific power cable of the on-board network is considered. The cable is given by a set of straight conductors with current. The ways of future improvement of the created product with the transition from one observation point to the field map in a given three-dimensional zone of arbitrary position, volume and orientation are outlined. The obtained result is considered as an element of the procedure for achieving electromagnetic compatibility of energy-intensive and highly sensitive subsystems of a modern complex technical object.


2020 ◽  
Vol 642 ◽  
pp. A128
Author(s):  
A. L. Siu-Tapia ◽  
L. R. Bellot Rubio ◽  
D. Orozco Suárez ◽  
R. Gafeira

Context. Penumbral microjets (PMJs) is the name given to elongated jet-like brightenings observed in the chromosphere above sunspot penumbrae. They are transient events that last from a few seconds to several minutes, and their origin is presumed to be related to magnetic reconnection processes. Previous studies have mainly focused on their morphological and spectral characteristics, and more recently on their spectropolarimetric signals during the maximum brightness stage. Studies addressing the temporal evolution of PMJs have also been carried out, but they are based on spatial and spectral time variations only. Aims. Here we investigate, for the first time, the temporal evolution of the polarization signals produced by short-lived PMJs (lifetimes < 2 min) to infer how the magnetic field vector evolves in the upper photosphere and mid-chromosphere. Methods. We use fast-cadence spectropolarimetric observations of the Ca II 854.2 nm line taken with the CRisp Imaging Spectropolarimeter at the Swedish 1 m Solar Telescope. The weak-field approximation (WFA) is used to estimate the strength and inclination of the magnetic field vector. By separating the Ca II 854.2 nm line into two different wavelength domains to account for the chromospheric origin of the line core and the photospheric contribution to the wings, we infer the height variation of the magnetic field vector. Results. The WFA reveals larger magnetic field changes in the upper photosphere than in the chromosphere during the PMJ maximum brightness stage. In the photosphere, the magnetic field inclination and strength undergo a transient increase for most PMJs, but in 25% of the cases the field strength decreases during the brightening. In the chromosphere, the magnetic field tends to be slightly stronger during the PMJs. Conclusions. The propagation of compressive perturbation fronts followed by a rarefaction phase in the aftershock region may explain the observed behavior of the magnetic field vector. The fact that such behavior varies among the analyzed PMJs could be a consequence of the limited temporal resolution of the observations and the fast-evolving nature of the PMJs.


2020 ◽  
Author(s):  
Jiansen He ◽  
Chuanpeng Hou ◽  
Xingyu Zhu ◽  
Qiaowen Luo ◽  
Daniel Verscharen ◽  
...  

&lt;p&gt;Wave-particle interaction plays a critical role in producing the newborn waves/turbulence in the foreshock region in front of supercritical shock, which is prevalent in the heliosphere. It has been a long-lasting goal to catch and witness the excitation and growth of waves/turbulence by identifying the ongoing process of wave-particle interaction. This goal cannot be fulfilled until the arrival of the MMS&amp;#8217;s era, during which we can simultaneously measure the electromagnetic fields and particle phase space densities with the unprecedented data quality. By surveying the data of burst mode, we are lucky to find some good examples illustrating the clear signals of wave activities in front of the shock. The active waves are diagnosed to be right-handed cyclotron waves, being highly circularly polarized and rotating right-handed about the background magnetic field vector. The waves are large amplitude with dB being greatly dominant over B0, or in other words, almost the whole magnetic field vector is involved in the circular rotation. Furthermore, we investigate the growth evolution of the large-amplitude cyclotron waves by calculating the spectrum of dJ.dE and its ratio to the electromagnetic energy spectrum. As far as we know, it is the first time to provide the spectrum of growth rate from in-situ measurements. Interestingly, we find that the contribution to the growth rate spectrum mainly comes from dJ&lt;sub&gt;e,perp&lt;/sub&gt;&amp;#183;dE&lt;sub&gt;perp&lt;/sub&gt; rather than dJ&lt;sub&gt;e,para&lt;/sub&gt;&amp;#183;dE&lt;sub&gt;para&lt;/sub&gt; or d&lt;strong&gt;J&lt;/strong&gt;&lt;sub&gt;i&lt;/sub&gt;&amp;#183;d&lt;strong&gt;E&lt;/strong&gt;. Although the eigen mode to couple the oscillating electromagnetic field is the electron bulk oscillation, the ultimate free energy to make the eigen mode unstable comes from the ion beams, which are reflected from the shock. The dynamics of 3D phase space densities for both ion and electron species are also studied in detail together with the fluctuating electromagnetic field, demonstrating the ongoing energy conversion during the wave-particle process.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document