Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarizaton measurements in the HeI D3 and H? lines

Solar Physics ◽  
1994 ◽  
Vol 154 (2) ◽  
pp. 231-260 ◽  
Author(s):  
V�ronique Bommier ◽  
Egidio Landi Degl'Innocenti ◽  
Jean-Louis Leroy ◽  
Sylvie Sahal-Br�chot
2020 ◽  
Vol 2020 (1) ◽  
pp. 34-39
Author(s):  
Dmitriy Antipin ◽  
Vladimir Vorob'ev ◽  
Maksim Maslov ◽  
Vadim Korchagin

The paper is dedicated to the circuit diagram substantiation of the specialized roller bench for researches of the magnetic field impact upon wheel adhesion with a rail. On the basis of the analysis of the experimental plants available at present for the study of the contact interaction of wheels with rails it is defined that two-roller benches are the most efficient for the investigation of different outer factors impact upon wheel adhesion with a rail. Taking into account mentioned above there is offered an original design of the two-roller bench equipped with the device for friction area magnetization. Two cylinders with parallel axes are theoretically a friction pair. Taking into account the presence of a non-concurrency arisen at roller manufacturing and mounting a point contact is realized in the bench. A bench formation is carried out according to a modular approach with the installation of rotary magnetic conductors. For the support of the largest magnetization of a friction area in longitudinal and transverse directions and for the decrease of stray flux in the bench there is realized a series connection of roller friction area with the sources of a magnetizing force. For the substantiation of rotary magnetic conductor position choice regarding a friction area of bench rollers there is carried out an analysis of magnetic field distribution in the friction area depending on the location of magnetic conductors. On the basis of the investigation results it is defined that a change of magnetic conductor position changes the orientation of a magnetic field vector, at that a roller friction area is magnetized in transverse and longitudinal directions. In view of this the bench design offered allows investigating the impact of longitudinal and cross magnetic fields upon friction in the contact of a wheel with a rail. Furthermore, it is defined that at small values of an angle between the direction of a magnetic field vector and the plane of a roller friction area a possibility to exclude the effect of roller magnetic additional loading appears.


2018 ◽  
Vol 63 (10) ◽  
pp. 906 ◽  
Author(s):  
P. M. Tomchuk ◽  
V. M. Starkov

The dependences of the magnetic absorption by spheroidal metal nanoparticles on the ratio between the particle curvature radii and the angle between the spheroid symmetry axis and the magnetic field vector of an incident electromagnetic wave are plotted and theoretically analyzed. An interesting result of the research is the growth of the energy absorbed by a spheroidal nanoparticle, as it becomes more oblate.


Sign in / Sign up

Export Citation Format

Share Document