scholarly journals On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

2006 ◽  
Vol 648 (1) ◽  
pp. 230-249 ◽  
Author(s):  
Michael Loewenstein
2021 ◽  
Vol 502 (4) ◽  
pp. 5882-5895
Author(s):  
Jonathan Freundlich ◽  
Dan Maoz

ABSTRACT The delay time distribution (DTD) of Type-Ia supernovae (SNe Ia) is important for understanding chemical evolution, SN Ia progenitors, and SN Ia physics. Past estimates of the DTD in galaxy clusters have been deduced from SN Ia rates measured in cluster samples observed at various redshifts, corresponding to different time intervals after a presumed initial brief burst of star formation. A recent analysis of a cluster sample at z = 1.13–1.75 confirmed indications from previous studies of lower redshift clusters, that the DTD has a power-law form, DTD(t) = R1(t/Gyr)α, with amplitude R1, at delay $t=1\,\rm Gyr$, several times higher than measured in field-galaxy environments. This implied that SNe Ia are somehow produced in larger numbers by the stellar populations in clusters. This conclusion, however, could have been affected by the implicit assumption that the stars were formed in a single brief starburst at high z. Here, we re-derive the DTD from the cluster SN Ia data, but relax the single-burst assumption. Instead, we allow for a range of star-formation histories and dust extinctions for each cluster. Via MCMC modelling, we simultaneously fit, using stellar population synthesis models and DTD models, the integrated galaxy-light photometry in several bands, and the SN Ia numbers discovered in each cluster. With these more-realistic assumptions, we find a best-fitting DTD with power-law index $\alpha =-1.09_{-0.12}^{+0.15}$, and amplitude $R_1=0.41_{-0.10}^{+0.12}\times 10^{-12}\,{\rm yr}^{-1}\, {\rm M}_\odot ^{-1}$. We confirm a cluster-environment DTD with a larger amplitude than the field-galaxy DTD, by a factor ∼2–3 (at 3.8σ). Cluster and field DTDs have consistent slopes of α ≈ −1.1.


Author(s):  
Silvia Pellegrini ◽  
Andrea Negri ◽  
Luca Ciotti

AbstractEarly-type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae and the thermalization of stellar motions. High resolution 2D hydrodynamical simulations showed that ordered rotation in the stellar component results in the formation of a centrifugally supported cold equatorial disc. In a recent numerical investigation we found that subsequent generations of stars are formed in this cold disc; this process consumes most of the cold gas, leaving at the present epoch cold masses comparable to those observed. Most of the new stellar mass formed a few Gyrs ago, and resides in a disc.


2018 ◽  
Vol 615 ◽  
pp. A162 ◽  
Author(s):  
P.-F. Léget ◽  
M. V. Pruzhinskaya ◽  
A. Ciulli ◽  
E. Gangler ◽  
G. Aldering ◽  
...  

Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. To perform such measurements the luminosity and cosmological redshift (z) of the SNe Ia have to be determined. The uncertainty on z includes an unknown peculiar velocity, which can be very large for SNe Ia in the virialized cores of massive clusters. Aims. We determine which SNe Ia exploded in galaxy clusters using 145 SNe Ia from the Nearby Supernova Factory. We then study how the correction for peculiar velocities of host galaxies inside the clusters improves the Hubble residuals. Methods. We found 11 candidates for membership in clusters. We applied the biweight technique to estimate the redshift of a cluster. Then, we used the galaxy cluster redshift instead of the host galaxy redshift to construct the Hubble diagram. Results. For SNe Ia inside galaxy clusters, the dispersion around the Hubble diagram when peculiar velocities are taken into account is smaller compared with a case without peculiar velocity correction, which has a wRMS = 0.130 ± 0.038 mag instead of wRMS = 0.137 ± 0.036 mag. The significance of this improvement is 3.58σ. If we remove the very nearby Virgo cluster member SN2006X (z < 0.01) from the analysis, the significance decreases to 1.34σ. The peculiar velocity correction is found to be highest for the SNe Ia hosted by blue spiral galaxies. Those SNe Ia have high local specific star formation rates and smaller stellar masses, which is seemingly counter to what might be expected given the heavy concentration of old, massive elliptical galaxies in clusters. Conclusions. As expected, the Hubble residuals of SNe Ia associated with massive galaxy clusters improve when the cluster redshift is taken as the cosmological redshift of the supernova. This fact has to be taken into account in future cosmological analyses in order to achieve higher accuracy for cosmological redshift measurements. We provide an approach to do so.


2010 ◽  
Vol 715 (2) ◽  
pp. 1021-1035 ◽  
Author(s):  
Benjamin Dilday ◽  
Bruce Bassett ◽  
Andrew Becker ◽  
Ralf Bender ◽  
Francisco Castander ◽  
...  

2009 ◽  
Vol 138 (5) ◽  
pp. 1271-1283 ◽  
Author(s):  
K. S. Dawson ◽  
G. Aldering ◽  
R. Amanullah ◽  
K. Barbary ◽  
L. F. Barrientos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document