scholarly journals Extremely α‐Enriched Globular Clusters in Early‐Type Galaxies: A Step toward the Dawn of Stellar Populations?

2006 ◽  
Vol 648 (1) ◽  
pp. 383-388 ◽  
Author(s):  
Thomas H. Puzia ◽  
Markus Kissler‐Patig ◽  
Paul Goudfrooij
2015 ◽  
Vol 11 (A29B) ◽  
pp. 144-146
Author(s):  
Xiaoting Fu ◽  
Alessandro Bressan ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Josefina Montalban ◽  
...  

AbstractWe present a new database of alpha enhanced evolutionary tracks and isochrones, computed with PARSEC (the PAdova & TRieste Stellar Evolution Code). The new isochrones are tested against Color-Magnitude Diagrams of well studied Globular Clusters, tacking into account multiple population effects. They are also compared with observations of dwarf stars in the Solar vicinity. After these preliminary computations, we will provide the full sets of isochrones with chemical compositions suitable for Globular Clusters and Bulge stars, that will be fully implemented into galaxy simulators. We will also provide new models suitable for the analysis of unresolved stellar populations in early type galaxies.


2021 ◽  
Vol 503 (4) ◽  
pp. 5997-6004
Author(s):  
Hagai B Perets ◽  
Paz Beniamini

ABSTRACT Environments of supernovae (SNe) and gamma-ray bursts (GRBs) link their progenitors to the underlying stellar population, providing critical clues for their origins. However, various transients including Ca-rich SNe and short-GRBs, appear to be located at remote locations, far from the stellar population of their host galaxy, challenging our understanding of their origin and/or physical evolution. These findings instigated models suggesting that either large velocity-kicks were imparted to the transient progenitors, allowing them to propagate to large distances and attain their remote locations; or that they formed in dense globular-clusters residing in the haloes. Here we show that instead, large spatial-offsets of such transients are naturally explained by observations of highly extended stellar populations in (mostly early-type) galaxy haloes, typically missed since they can only be identified through ultra-deep/stacked images. Consequently, no large velocity kicks, nor halo globular–cluster environments are required in order to explain the origin of these transients. These findings support thermonuclear explosions on white-dwarfs, for the origins of Ca-rich SNe progenitors, and the existence of small (or zero) kick-velocities given to short-GRB progenitors. Furthermore, since stacked/ultra-deep imaging show that early-type galaxies are more extended than late-type galaxies, studies of transients’ offset-distribution (e.g. type Ia SNe or FRBs) should account for host galaxy-type. Since early-type galaxies contain older stellar populations, transient arising from older stellar populations would have larger fractions of early-type hosts, and consequently larger fractions of large-offset transients. In agreement with our results for short-GRBs and Ca-rich SNe showing different offset distributions in early versus late-type galaxies.


2021 ◽  
Vol 923 (1) ◽  
pp. 12
Author(s):  
Sadman S. Ali ◽  
Roberto De Propris ◽  
Chul Chung ◽  
Steven Phillipps ◽  
Malcolm N. Bremer

Abstract We measure the near-UV (rest-frame ∼2400 Å) to optical color for early-type galaxies in 12 clusters at 0.3 < z < 1.0. We show that this is a suitable proxy for the more common far-ultraviolet bandpass used to measure the ultraviolet upturn and find that the upturn is detected to z = 0.6 in these data, in agreement with previous work. We find evidence that the strength of the upturn starts to wane beyond this redshift and largely disappears at z = 1. Our data are most consistent with models where early-type galaxies contain minority stellar populations with non-cosmological helium abundances, up to around 46%, formed at z ≥ 3, resembling globular clusters with multiple stellar populations in our Galaxy. This suggests that elliptical galaxies and globular clusters share similar chemical evolution and star formation histories. The vast majority of the stellar mass in these galaxies also must have been in place at z > 3.


2020 ◽  
Vol 494 (4) ◽  
pp. 5293-5297
Author(s):  
Duncan A Forbes ◽  
Bililign T Dullo ◽  
Jonah Gannon ◽  
Warrick J Couch ◽  
Enrichetta Iodice ◽  
...  

ABSTRACT Using deep g, r, i imaging from the VST Early-type GAlaxy Survey (VEGAS), we have searched for ultradiffuse galaxies (UDGs) in the IC 1459 group. Assuming they are group members, we identify nine galaxies with physical sizes and surface brightnesses that match the UDG criteria within our measurement uncertainties. They have mean colours of g − i = 0.6 and stellar masses of ∼108 M⊙. Several galaxies appear to have associated systems of compact objects, e.g. globular clusters. Two UDGs contain a central bright nucleus, with a third UDG revealing a remarkable double nucleus. This appears to be the first reported detection of a double nucleus in a UDG – its origin is currently unclear.


2019 ◽  
Vol 14 (S351) ◽  
pp. 524-527
Author(s):  
Maria A. Tiongco ◽  
Enrico Vesperini ◽  
Anna Lisa Varri

AbstractWe present several results of the study of the evolution of globular clusters’ internal kinematics, as driven by two-body relaxation and the interplay between internal angular momentum and the external Galactic tidal field. Via a large suite of N-body simulations, we explored the three-dimensional velocity space of tidally perturbed clusters, by characterizing their degree of velocity dispersion anisotropy and their rotational properties. These studies have shown that a cluster’s kinematical properties contain distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. Building on this fundamental understanding, we then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum.


Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


Author(s):  
A. Bressan ◽  
P. Panuzzo ◽  
O. Vega ◽  
L. Buson ◽  
M. Clemens ◽  
...  

2008 ◽  
Vol 681 (1) ◽  
pp. 197-224 ◽  
Author(s):  
Eric W. Peng ◽  
Andrés Jordán ◽  
Patrick Côté ◽  
Marianne Takamiya ◽  
Michael J. West ◽  
...  

2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


2009 ◽  
Vol 5 (S267) ◽  
pp. 459-459
Author(s):  
Alexander Fritz ◽  
Michael D. Hoenig ◽  
Ricardo P. Schiavon

Within the hierarchical CDM framework, gas-poor mergers contribute substantially to the building of the most massive galaxies (Faber et al. 2007). We want to test this scenario by studying the fundamental plane (FP) and the stellar populations of the most massive galaxies. We investigate a well-defined sample of massive early-type galaxies at 0.1<z<0.4, identified from the SDSS database. Out of 42,000 possible targets in the SDSS database, we extracted 23 luminous early-type galaxies with bona fide high velocity dispersions of σ>350 km s−1. These systems are located either in high or low-density environments and show a variety of small surface-brightness structure. Using archival HST/ACS images and Gemini/GMOS spectroscopy, we will explore the photometric and spectroscopic properties of these galaxies.


Sign in / Sign up

Export Citation Format

Share Document