Kinematical evolution of Globular Clusters

2019 ◽  
Vol 14 (S351) ◽  
pp. 524-527
Author(s):  
Maria A. Tiongco ◽  
Enrico Vesperini ◽  
Anna Lisa Varri

AbstractWe present several results of the study of the evolution of globular clusters’ internal kinematics, as driven by two-body relaxation and the interplay between internal angular momentum and the external Galactic tidal field. Via a large suite of N-body simulations, we explored the three-dimensional velocity space of tidally perturbed clusters, by characterizing their degree of velocity dispersion anisotropy and their rotational properties. These studies have shown that a cluster’s kinematical properties contain distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. Building on this fundamental understanding, we then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum.

2021 ◽  
Vol 502 (3) ◽  
pp. 4290-4304
Author(s):  
Enrico Vesperini ◽  
Jongsuk Hong ◽  
Mirek Giersz ◽  
Arkadiusz Hypki

ABSTRACT We have carried out a set of Monte Carlo simulations to study a number of fundamental aspects of the dynamical evolution of multiple stellar populations in globular clusters with different initial masses, fractions of second generation (2G) stars, and structural properties. Our simulations explore and elucidate: (1) the role of early and long-term dynamical processes and stellar escape in the evolution of the fraction of 2G stars and the link between the evolution of the fraction of 2G stars and various dynamical parameters; (2) the link between the fraction of 2G stars inside the cluster and in the population of escaping stars during a cluster’s dynamical evolution; (3) the dynamics of the spatial mixing of the first-generation (1G) and 2G stars and the details of the structural properties of the two populations as they evolve toward mixing; (4) the implications of the initial differences between the spatial distribution of 1G and 2G stars for the evolution of the anisotropy in the velocity distribution and the expected radial profile of the 1G and 2G anisotropy for clusters at different stages of their dynamical history; and (5) the variation of the degree of energy equipartition of the 1G and the 2G populations as a function of the distance from the cluster’s centre and the cluster’s evolutionary phase.


2019 ◽  
Vol 14 (S351) ◽  
pp. 494-497
Author(s):  
Simon Rozier ◽  
Jean-Baptiste Fouvry ◽  
Philip G. Breen ◽  
Anna Lisa Varri ◽  
Christophe Pichon ◽  
...  

AbstractRecent observations of globular clusters imposed major revisions to the previous paradigm, in which they were considered to be isotropic in velocity space and non-rotating. However, the theory of collisionless spheroids with some kinematic richness has seldom been studied. We present here a first step in this direction, owing to new results regarding the linear stability of rotating Plummer spheres, with varying anisotropy in velocity space and total amount of angular momentum. We extend the well-known radial orbit instability to rotating systems, and discover a new regime of instability in fast rotating, tangentially anisotropic systems.


2006 ◽  
Vol 2 (S235) ◽  
pp. 68-68
Author(s):  
Santiago Alcobé ◽  
Rafael Cubarsi

AbstractThe statistical algorithm MEMPHIS (Cubarsi & Alcobé 2006) was applied to a large sample from the Hipparcos catalogue with the full space motions (Cubarsi & Alcobé 2004), to segregate the kinematic populations of the solar neighbourhood. Four stellar populations were obtained, namely early-thin disk, young-thin disk, the whole thin disk (which contains both previous populations plus the continuum of old thin disk stars), and the thick disk population. Now, we wish to point out two main results from the analysis of such a segregation (Alcobé & Cubarsi 2005). First, the relationship between the maximum stellar velocity of a sample and its average age τ can be approximated by the relation |V|max ∝ τ. Second, the local stellar populations can be described from a Titius-Bode like law (TBLL) for the radial velocity dispersion, $\sigma_1 = 6.6 \, (\frac43)^n$, so that for values n = 2, 3, 5, 8 it determines some average energy levels of discrete populations, while for continuous intervals n ≤ 5 and n ≥ 7 it describes the velocity-age evolution of thin and thick disk components, as shown in the Table below.Thus, the velocity dispersions of the local kinematic populations seem to follow a geometrical progression, allowing us to do an analogy with the old Titius-Bode distribution for keplerian orbits, although a physical explanation for the later law remains still open (Lynch 2003). Indeed, such a TBLL in the velocity space could be already conjectured from previous published kinematic parameters of the Galactic components (e.g. Alcobé & Cubarsi 2001). As in the keplerian case, it is possible to argue that velocity dispersion values have too much uncertainty, but, even so, it is not possible to ignore anymore such a resemblance.Such results are consistent with Galactic formation models that predict some quasi-continuous stellar populations in the sense that the continuity is constricted by σ1 levels of the TBLL. The physical meaning of the variable n involved in the TBLL may be related with the average epicycle energy ER ~ σ21 of the stars representative of the disk heating process. It shows continuity from n = 3 to 5 for the thin disk, and from 7 to 8 for the thick disk, but discreteness from n = 2 to 3 between early-thin and young-thin disk, and from 5 to 8 between thin and thick disk components. For the thin disk, for example, the level n = 5 should represent the saturation point of maximum velocity dispersion, likely corresponding to the limited predicted by the observed wavenumber of spiral structure of the Milky Way, while the discontinuity from n = 5 to 7 indicates an abrupt jump in the average energy, that was produced when the thick disk was formed about 10±1 Gyr ago.


2020 ◽  
Vol 500 (4) ◽  
pp. 4578-4596
Author(s):  
Madeleine McKenzie ◽  
Kenji Bekki

ABSTRACT Using three-dimensional smoothed particle hydrodynamics simulations, we investigate the formation of multiple stellar populations (MSPs) in globular clusters (GCs) within the context of their parent galaxies. In our scenario, the second generation (2G) of stars originate from both asymptotic giant branch (AGB) polluters and pristine gas accreted from the host galaxy. Previous theoretical and numerical studies have demonstrated that this ‘AGB with dilution’ model has the potential to alleviate several problems faced by the classical AGB scenario. However, the accretion of pristine gas on to the GC has yet to be investigated within the context of the parent galaxy. This paper presents the preliminary results from our original simulation code which models GC formation from giant molecular clouds in a host galaxy, and subsequent gas accretion on to the GC. By simulating the genesis of the 2G over a 370 Myr time frame, we demonstrate that the fraction of 2G stars are inextricably linked to the GC’s environment. Our simulations rationalize the wide variety of abundance patterns, kinematics, and 2G concentrations by altering the initial conditions of both the GC progenitor and the host galaxy itself. Most notably, we reproduce a positive correlation between the fraction of 2G stars and the initial mass of the cluster. We discuss the physical implications of our scenario and compare our simulations with observations of the Galactic GC 47 Tucanae (47 Tuc). Finally, we present scaling relations that encompass the wider GC population and serve as a reference for future observations.


2019 ◽  
Vol 14 (S351) ◽  
pp. 341-345
Author(s):  
Marco Tailo

AbstractOnce the age and metallicity are fixed, the colour distribution of horizontal branch stars in a globular cluster depends on few parameters: the helium abundance of the population and the mass lost during the pre-HB stages. These parameters are usually derived from the HB itself, hence they are degenerate. Breaking this degeneracy and understanding their role is a tricky and challenging problem that no study has solved yet. Combining the information obtained from the chromosome maps and the analysis of multi-band photometry with state of the art stellar evolution models, we can obtain a solid estimate of Y for the various stellar populations in a GC. We will then have, for the first time, the possibility to break the parameters’ degeneracy on the HB, understand the role of the mass loss, and lay the foundation to build another piece of the multiple populations mosaic.


2019 ◽  
Vol 14 (S351) ◽  
pp. 281-284
Author(s):  
G. Cordoni ◽  
A. P. Milone ◽  
A. Mastrobuono-Battisti ◽  
A. F. Marino ◽  
E. P. Lagioia ◽  
...  

AbstractThe internal dynamics of multiple stellar populations in Globular Clusters (GCs) provides unique constraints on the physical processes responsible for their formation. Specifically, the present-day kinematics of cluster stars, such as rotation and velocity dispersion, seems to be related to the initial configuration of the system. In recent work (Milone et al. 2018), we analyzed for the first time the kinematics of the different stellar populations in NGC 0104 (47 Tucanae) over a large field of view, exploiting the Gaia Data Release 2 proper motions combined with multi-band ground-based photometry. In this paper, based on the work by Cordoni et al. (2019), we extend this analysis to six GCs, namely NGC 0288, NGC 5904 (M 5), NGC 6121 (M 4), NGC 6752, NGC 6838 (M 71) and further explore NGC 0104. Among the analyzed clusters only NGC 0104 and NGC 5904 show significant rotation on the plane of the sky. Interestingly, multiple stellar populations in NGC 5904 exhibit different rotation curves.


2019 ◽  
Vol 14 (S353) ◽  
pp. 246-247
Author(s):  
Simon Rozier ◽  
Jean-Baptiste Fouvry ◽  
Philip G. Breen ◽  
Anna Lisa Varri ◽  
Christophe Pichon ◽  
...  

AbstractRecent observations of globular clusters encourage to revise some aspects of the traditional paradigm, in which they were considered to be isotropic in velocity space and non-rotating. However, the theory of collisionless spheroids with some kinematic richness has seldom been studied. We present here a further step in this direction, owing to new results regarding the linear stability of rotating Plummer spheres, with varying anisotropy in velocity space and total amount of angular momentum. We extend the well-known radial orbit instability to rotating systems, and discover a new regime of instability in fast rotating, tangentially anisotropic systems.


2013 ◽  
Vol 554 ◽  
pp. A19 ◽  
Author(s):  
S. Cassisi ◽  
A. Mucciarelli ◽  
A. Pietrinferni ◽  
M. Salaris ◽  
J. Ferguson

2014 ◽  
Vol 10 (S312) ◽  
pp. 231-234
Author(s):  
Gareth F. Kennedy

AbstractThe role of stability in the general three-body problem is investigated with regard to the tidal radius of a globular cluster (GC) in a galactic potential. This proceedings is a summary of two papers which outline the stability method (Kennedy 2014a) and compare the predicted stability boundary radius to observations of velocity dispersion profiles in Milky Way GCs (Kennedy 2014b).


2020 ◽  
Vol 494 (3) ◽  
pp. 4548-4557
Author(s):  
Nicholas A Barth ◽  
Jeffrey M Gerber ◽  
Owen M Boberg ◽  
Eileen D Friel ◽  
Enrico Vesperini

ABSTRACT We present a study of the internal kinematics of two globular clusters, M10 (NGC 6254) and M71 (NGC 6838), using individual radial velocity (RV) measurements obtained from observations using the Hydra multiobject spectrograph on the WIYN 3.5 m telescope. We measured 120 RVs for stars in M10, of which 107 were determined to be cluster members. In M71, we measured 82 RVs and determined 78 of those measurements belonged to cluster members. Using the cluster members, we determine a mean RV of 75.9 ± 4.0 (s.d.) km s−1 and −22.9 ± 2.2 (s.d.) km s−1 for M10 and M71, respectively. We combined the Hydra RV measurements with literature samples and performed a line-of-sight rotational analysis on both clusters. Our analysis has not revealed a statistically significant rotation in either of these clusters with the exception of the inner region (10–117 arcsec) of M10 for which we find hints of a marginally significant rotation with amplitude Vrot = 1.14 ± 0.18 km s−1. For M10, we calculate a central velocity dispersion of σ0 = 5.44 ± 0.61 km s−1, which gives a ratio of the amplitude of rotation to the central velocity dispersion Vrot/σ0 = 0.21 ± 0.04. We also explored the rotation of the multiple stellar populations identified in M10 and M71 and found rotation (or lack thereof) in each population consistent with each other and the cluster global rotation signatures.


Sign in / Sign up

Export Citation Format

Share Document