scholarly journals The Chemistry of Multiply Deuterated Molecules in Protoplanetary Disks. I. The Outer Disk

2007 ◽  
Vol 660 (1) ◽  
pp. 441-460 ◽  
Author(s):  
K. Willacy
2019 ◽  
Vol 632 ◽  
pp. A32 ◽  
Author(s):  
M. K. McClure

Context. The carbon content of protoplanetary disks is an important parameter to characterize planets formed at different disk radii. There is some evidence from far-infrared and submillimeter observations that gas in the outer disk is depleted in carbon, with a corresponding enhancement of carbon-rich ices at the disk midplane. Observations of the carbon content inside of the inner sublimation rim could confirm how much carbon remains locked in kilometer size bodies in the disk. Aims. I aim to determine the density, temperature, and carbon abundance inside the disk dust sublimation rim in a set of T Tauri stars with full protoplanetary disks. Methods. Using medium-resolution, near-infrared (0.8–2.5 μm) spectra and the new Gaia DR2 distances, I self-consistently determine the stellar, extinction, veiling, and accretion properties of the 26 stars in my sample. From these values, and non-accreting T Tauri spectral templates, I extract the inner disk excess of the target stars from their observed spectra. Then I identify a series of C0 recombination lines in 18 of these disks and use the CHIANTI atomic line database with an optically thin slab model to constrain the average ne, Te, and nc for these lines in the five disks with a complete set of lines. By comparing these values with other slab models of the inner disk using the Cloudy photoionization code, I also constrain nH and the carbon abundance, XC, and hence the amount of carbon “missing” from the slab. For one disk, DR Tau, I use relative abundances for the accretion stream from the literature to also determine XSi and XN. Results. The inner disks modeled here are extremely dense (nH ~ 1016 cm−3), warm (Te ~ 4500 K), and moderately ionized (log Xe ~ 3.3). Three of the five modeled disks show robust carbon depletion up to a factor of 42 relative to the solar value. I discuss multiple ways in which the “missing” carbon could be locked out of the accreting gas. Given the high-density inner disk gas, evidence for radial drift, and lack of obvious gaps in these three systems, their carbon depletion is most consistent with the “missing” carbon being sequestered in kilometer size bodies. For DR Tau, nitrogen and silicon are also depleted by factors of 45 and 4, respectively, suggesting that the kilometer size bodies into which the grains are locked were formed beyond the N2 snowline. I explore briefly what improvements in the models and observations are needed to better address this topic in the future.


2019 ◽  
Vol 623 ◽  
pp. L6 ◽  
Author(s):  
L. Podio ◽  
F. Bacciotti ◽  
D. Fedele ◽  
C. Favre ◽  
C. Codella ◽  
...  

Context. Planets form in protoplanetary disks and inherit their chemical compositions. Aims. It is thus crucial to map the distribution and investigate the formation of simple organics, such as formaldehyde and methanol, in protoplanetary disks. Methods. We analyze ALMA observations of the nearby disk-jet system around the T Tauri star DG Tau in the o − H2CO 31, 2 − 21, 1 and CH3OH 3−2, 2 − 4−1, 4 E, 50, 5 − 40, 4 A transitions at an unprecedented resolution of $ {\sim}0{{\overset{\prime\prime}{.}}}{15} $, i.e., ∼18 au at a distance of 121 pc. Results. The H2CO emission originates from a rotating ring extending from ∼40 au with a peak at ∼62 au, i.e., at the edge of the 1.3 mm dust continuum. CH3OH emission is not detected down to an rms of 3 mJy beam−1 in the 0.162 km s−1 channel. Assuming an ortho-to-para ratio of 1.8−2.8 the ring- and disk-height-averaged H2CO column density is ∼0.3−4 × 1014 cm−2, while that of CH3OH is < 0.04−0.7 × 1014 cm−2. In the inner 40 au no o − H2CO emission is detected with an upper limit on its beam-averaged column density of ∼0.5−6 × 1013 cm−2. Conclusions. The H2CO ring in the disk of DG Tau is located beyond the CO iceline (RCO ∼ 30 au). This suggests that the H2CO abundance is enhanced in the outer disk due to formation on grain surfaces by the hydrogenation of CO ice. The emission peak at the edge of the mm dust continuum may be due to enhanced desorption of H2CO in the gas phase caused by increased UV penetration and/or temperature inversion. The CH3OH/H2CO abundance ratio is < 1, in agreement with disk chemistry models. The inner edge of the H2CO ring coincides with the radius where the polarization of the dust continuum changes orientation, hinting at a tight link between the H2CO chemistry and the dust properties in the outer disk and at the possible presence of substructures in the dust distribution.


2020 ◽  
Author(s):  
Linda Podio ◽  
Antonio Garufi ◽  
Claudio Codella ◽  
Davide Fedele ◽  
Kazi Rygl ◽  
...  

&lt;p&gt;How have planets formed in the Solar System? And what chemical composition they inherited from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of the Sun to its disk and then to the planets which assembled in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process? And what was the role of comets in the delivery of volatiles and prebiotic compounds to early Earth?&lt;/p&gt; &lt;p&gt;A viable way to answer these questions is to observe protoplanetary disks around young Sun-like stars and compare their chemical composition with that of the early Solar System, which is imprinted in comets. The impacting images recently obtained by millimetre arrays of antennas such as ALMA provided the first observational evidence of ongoing planet formation in 0.1-1 million years old disks, through rings and gaps in their dust and gas distribution. The chemical composition of the forming planets and small bodies clearly depends on the location and timescale for their formation and is intimately connected to the spatial distribution and abundance of the various molecular species in the disk. The chemical characterisation of disks is therefore crucial.&lt;/p&gt; &lt;p&gt;This field, however, is still in its infancy, because of the small sizes of disks (~100 au) and to the low gas-phase abundance of molecules (abundances with respect to H&lt;sub&gt;2&lt;/sub&gt; down to 10&lt;sup&gt;-12&lt;/sup&gt;), which requires an unprecedented combination of angular resolution and sensitivity. I will show the first pioneering results obtained as part of the ALMA chemical survey of protoplanetary disks in the Taurus star forming region (ALMA-DOT program). Thanks to the ALMA images at ~20 au resolution, we recovered the radial distribution and abundance of diatomic molecules (CO and CN), S-bearing molecules (CS, SO, SO&lt;sub&gt;2&lt;/sub&gt;, H&lt;sub&gt;2&lt;/sub&gt;CS), as well as simple organics (H&lt;sub&gt;2&lt;/sub&gt;CO and CH&lt;sub&gt;3&lt;/sub&gt;OH) which are key for the formation of prebiotic compounds. Enhanced H&lt;sub&gt;2&lt;/sub&gt;CO emission in the cold outer disk, outside the CO snowline, suggests that organic molecules may be efficiently formed in disks on the icy mantles of dust grain. This could be the dawn of ice chemistry in the disk, producing ices rich of complex organic molecules (COMs) which could be incorporated by the bodies forming in the outer disk region, such as comets.&lt;span class=&quot;Apple-converted-space&quot;&gt;&amp;#160;&lt;/span&gt;&lt;/p&gt; &lt;p&gt;The next step is the comparison of the molecules radial distribution and abundance in disks with the chemical composition of comets, which are the leftover building blocks of giant planet cores and other planetary bodies. The first pioneering results in this direction have been obtained thanks to the ESA&amp;#8217;s &lt;em&gt;Rosetta &lt;/em&gt;mission, which allowed obtaining in situ measurements of the COMs abundance on the comet 67P/Churyumov-Gerasimenko. The comparison with three protostellar solar analogs observed on Solar System scales has shown comparable COMs abundance, implying that the volatile composition of comets and planetesimals may be partially inherited from the protostellar stage. The advent of new mission, devoted to sample return such as AMBITION will allow us to do a step ahead in this direction.&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt;


2022 ◽  
Vol 924 (1) ◽  
pp. 3
Author(s):  
Ziyan Xu ◽  
Xue-Ning Bai

Abstract Planetesimal formation is a crucial yet poorly understood process in planet formation. It is widely believed that planetesimal formation is the outcome of dust clumping by the streaming instability (SI). However, recent analytical and numerical studies have shown that the SI can be damped or suppressed by external turbulence, and at least the outer regions of protoplanetary disks are likely weakly turbulent due to magneto-rotational instability (MRI). We conduct high-resolution local shearing-box simulations of hybrid particle-gas magnetohydrodynamics (MHD), incorporating ambipolar diffusion as the dominant nonideal MHD effect, applicable to outer disk regions. We first show that dust backreaction enhances dust settling toward the midplane by reducing turbulence correlation time. Under modest level of MRI turbulence, we find that dust clumping is in fact easier than the conventional SI case, in the sense that the threshold of solid abundance for clumping is lower. The key to dust clumping includes dust backreaction and the presence of local pressure maxima, which in our work is formed by the MRI zonal flows overcoming background pressure gradient. Overall, our results support planetesimal formation in the MRI-turbulent outer protoplanetary disks, especially in ring-like substructures.


2020 ◽  
Vol 635 ◽  
pp. A121 ◽  
Author(s):  
G. A. Muro-Arena ◽  
M. Benisty ◽  
C. Ginski ◽  
C. Dominik ◽  
S. Facchini ◽  
...  

Context. Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly caused by an inclined (sub-)stellar companion embedded in the disk. Aims. We aim to study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. Methods. We obtained J- and H-band observations that show strong azimuthal asymmetries in polarized scattered light with VLT/SPHERE. In the outer disk, beyond ~30 au, a broad shadow spans a range of ~240 deg in position angle, in the east. A bright ring at ~16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at ~34 and ~50 au. We created a simple four-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. Results. We find that the shadow on the outer disk covers a range of position angles too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones – or a continuously warped region – to cast this broad shadow on the outer disk. A small misalignment of ~4° between adjacent components can reproduce most of the observed shadow features. Conclusions. Multiple misaligned disk zones, potentially mimicking a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust-depleted gap responsible for a dip in the SED.


2018 ◽  
Vol 14 (S345) ◽  
pp. 360-361
Author(s):  
H. Nomura ◽  
A. Higuchi ◽  
N. Sakai ◽  
S. Yamamoto ◽  
M. Nagasawa ◽  
...  

AbstractIt is thought that protoplanets formed in protoplanetary disks excite the orbital motion of the surrounding planetesimals, and the bow shocks caused by the highly excited planetesimals heat their icy component evaporating into gas. We have performed model calculations to study the evolution of molecular abundances of the evaporated icy component, which suggests sulfur-bearing molecules can be good tracers of icy planetesimal evaporation. Here we report the result of our ALMA observations of sulfur-bearing molecules towards protoplanetary disks. The lines were undetected but the obtained upper limits of the line fluxes and our model calculations give upper limits of the fractional abundances of x(H2S) < 10−11 and x(SO) < 10−10 in the outer disk. These results are consistent with the molecular abundances in comets in our Solar system.


2015 ◽  
Vol 10 (S314) ◽  
pp. 139-142
Author(s):  
Nienke van der Marel ◽  
Ewine F. van Dishoeck ◽  
Simon Bruderer ◽  
Paola Pinilla ◽  
Tim van Kempen ◽  
...  

AbstractProtoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.


2018 ◽  
Vol 620 ◽  
pp. A94 ◽  
Author(s):  
A. Garufi ◽  
M. Benisty ◽  
P. Pinilla ◽  
M. Tazzari ◽  
C. Dominik ◽  
...  

Context. Dozens of protoplanetary disks have been imaged in scattered light during the last decade. Aims. The variety of brightness, extension, and morphology from this census motivates a taxonomical study of protoplanetary disks in polarimetric light to constrain their evolution and establish the current framework of this type of observation. Methods. We classified 58 disks with available polarimetric observations into six major categories (Ring, Spiral, Giant, Rim, Faint, and Small disks) based on their appearance in scattered light. We re-calculated the stellar and disk properties from the newly available Gaia DR2 and related these properties with the disk categories. Results. More than half of our sample shows disk substructures. For the remaining sources, the absence of detected features is due to their faintness, their small size, or the disk geometry. Faint disks are typically found around young stars and typically host no cavity. There is a possible dichotomy in the near-infrared (NIR) excess of sources with spiral-disks (high) and ring-disks (low). Like spirals, shadows are associated with a high NIR excess. If we account for the pre-main sequence evolutionary timescale of stars with different mass, spiral arms are likely associated with old disks. We also found a loose, shallow declining trend for the disk dust mass with time. Conclusions. Protoplanetary disks may form substructures like rings very early in their evolution but their detectability in scattered light is limited to relatively old sources ( ≳5 Myr) where the recurrently detected disk cavities cause the outer disk to be illuminate. The shallow decrease of disk mass with time might be due to a selection effect, where disks observed thus far in scattered light are typically massive, bright transition disks with longer lifetimes than most disks. Our study points toward spirals and shadows being generated by planets of a fraction of a Jupiter mass to a few Jupiter masses in size that leave their (observed) imprint on both the inner disk near the star and the outer disk cavity.


Sign in / Sign up

Export Citation Format

Share Document