The Influence of Giant Planets Near a Mean Motion Resonance on Earth‐like Planets in the Habitable Zone of Sun‐like Stars

2008 ◽  
Vol 681 (2) ◽  
pp. 1639-1645 ◽  
Author(s):  
E. Pilat‐Lohinger ◽  
Á. Süli ◽  
P. Robutel ◽  
F. Freistetter
2019 ◽  
Vol 486 (4) ◽  
pp. 4980-4986 ◽  
Author(s):  
David Kipping ◽  
David Nesvorný ◽  
Joel Hartman ◽  
Guillermo Torres ◽  
Gaspar Bakos ◽  
...  

ABSTRACT We present the discovery of a pair of transiting giant planets using four sectors of TESS photometry. TOI-216 is a 0.87 M⊙ dwarf orbited by two transiters with radii of 8.2 and 11.3 R⊕, and periods of 17.01 and 34.57 d, respectively. Anticorrelated TTVs are clearly evident indicating that the transiters orbit the same star and interact via a near 2:1 mean motion resonance. By fitting the TTVs with a dynamical model, we infer masses of $30_{-14}^{+20}$ and $200_{-100}^{+170}$ M⊕, establishing that the objects are planetary in nature and have likely sub-Kronian and Kronian densities. TOI-216 lies close to the southern ecliptic pole and thus will be observed by TESS throughout the first year, providing an opportunity for continuous dynamical monitoring and considerable refinement of the dynamical masses presented here. TOI-216 closely resembles Kepler-9 in architecture, and we hypothesize that in such systems these Saturn analogues failed to fully open a gap and thus migrated far deeper into the system before becoming trapped into resonance, which would imply that future detections of new analogues may also have sub-Jupiter masses.


2012 ◽  
Vol 11 (4) ◽  
pp. 297-307 ◽  
Author(s):  
L. Kaltenegger ◽  
Y. Miguel ◽  
S. Rugheimer

AbstractA decade of exoplanet search has led to surprising discoveries, from giant planets close to their star, to planets orbiting two stars, all the way to the first extremely hot, rocky worlds with potentially permanent lava on their surfaces due to the star's proximity. Observation techniques have reached the sensitivity to explore the chemical composition of the atmospheres as well as physical structure of some detected gas planets and detect planets of less than 10 Earth masses (MEarth), the so-called super-Earths, among them some that may potentially be habitable. Three confirmed non-transiting planets, and several transiting Kepler planetary candidates, orbit in the habitable zone (HZ) of their host star. The detection and characterization of rocky and potentially Earth-like planets is approaching rapidly with future ground and space missions that can explore the planetary environments by analysing their atmosphere remotely. This paper discusses how to characterize a rocky exoplanet remotely.


2020 ◽  
Vol 492 (4) ◽  
pp. 6007-6018 ◽  
Author(s):  
Raúl O Chametla ◽  
Gennaro D’Angelo ◽  
Mauricio Reyes-Ruiz ◽  
F Javier Sánchez-Salcedo

ABSTRACT We study the dynamical evolution of Jupiter and Saturn embedded in a gaseous, solar nebula-type disc by means of hydrodynamics simulations with the fargo2d1d code. We study the evolution for different initial separations of the planets’ orbits, ΔaSJ, to investigate whether they become captured in mean motion resonance (MMR) and the direction of the subsequent migration of the planet (inwards or outwards). We also provide an assessment of the planet’s orbital dynamics at different epochs of Saturn’s growth. We find that the evolution of initially compact orbital configurations is dependent on the value of ΔaSJ. This implies that an evolution as that proposed in the Grand Tack model depends on the precise initial orbits of Jupiter and Saturn and on the time-scales for their formation. Capture in the 1:2 MMR and inward or (nearly) stalled migration are highly favoured. Within its limits, our work suggests that the reversed migration, associated with the resonance capture of Jupiter and Saturn, may be a low-probability evolutionary scenario, so that other planetary systems with giant planets are not expected to have experienced a Grand Tack-like evolutionary path.


2014 ◽  
Vol 9 (S310) ◽  
pp. 178-179
Author(s):  
Despoina K. Skoulidou ◽  
Kleomenis Tsiganis ◽  
Harry Varvoglis

AbstractThe problem of the origin of asteroids residing in the Jovian first-order mean motion resonances is still open. Is the observed population survivors of a much larger population formed in the resonance in primordial times? Here, we study the evolution of 182 long-lived asteroids in the 2:1 Mean Motion Resonance, identified in Brož & Vokrouhlické (2008). We numerically integrate their trajectories in two different dynamical models of the solar system: (a) accounting for the gravitational effects of the four giant planets (i.e. 4-pl) and (b) adding the terrestrial planets from Venus to Mars (i.e. 7-pl). We also include an approximate treatment of the Yarkovksy effect (as in Tsiganis et al.2003), assuming appropriate values for the asteroid diameters.


2007 ◽  
Vol 3 (S249) ◽  
pp. 413-418
Author(s):  
Hui Zhang ◽  
Ji-Lin Zhou

AbstractWe investigate the migration of two giant planets embedded in a proto-stellar disk. The inner planet(initially located at R10=1) is of 1 Jupiter mass and the outer one(R20=1.5) is of 1 Saturn mass. We find that due to the existence of the inner massive planet, the outer planet can not open a clear gap. Instead of an inward migration and being captured by the mean motion resonance of the inner planet, the outer planet undergoes an outward runaway migration. We conclude that this runaway migration is caused by the co-rotation torque in the co-orbital region of the outer planet and sustained by the wave(flow) driven by the inner massive planet.


2011 ◽  
Vol 7 (S280) ◽  
pp. 302-312
Author(s):  
L. Kaltenegger

AbstractA decade of exoplanet search has led to surprising discoveries, from giant planets close to their star, to planets orbiting two stars, all the way to the first extremely hot, rocky worlds with potentially permanent lava on their surfaces due to the star's proximity. Observation techniques have reached the sensitivity to explore the chemical composition of the atmospheres as well as physical structure of some detected planets. Recent advances in detection techniques find planets of less than 10 MEarth (so called Super-Earths), among them some that may potentially be habitable. Two confirmed non-transiting planets and several transiting Kepler planetary candidates orbit in the Habitable Zone of their host star. The detection and characterization of rocky and potentially Earth-like planets is approaching rapidly with future ground- and space-missions, that can explore the planetary environments by analyzing their atmosphere remotely. The results of a first generation space mission will most likely be an amazing scope of diverse planets that will set planet formation, evolution as well as our planet in an overall context.


2021 ◽  
Vol 162 (6) ◽  
pp. 283
Author(s):  
Trifon Trifonov ◽  
Rafael Brahm ◽  
Nestor Espinoza ◽  
Thomas Henning ◽  
Andrés Jordán ◽  
...  

Abstract TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a b = 0.096 ± 0.001 au, m b = 0.98 ± 0.06 M Jup), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a c = 0.155 ± 0.002 au, m c = 0.37 ± 0.10 M Jup) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M ⊙, a radius of 0.79 R ⊙, and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.


Author(s):  
Kazantsev Anatolii ◽  
Kazantseva Lilia

ABSTRACT The paper analyses possible transfers of bodies from the main asteroid belt (MBA) to the Centaur region. The orbits of asteroids in the 2:1 mean motion resonance (MMR) with Jupiter are analysed. We selected the asteroids that are in resonant orbits with e > 0.3 whose absolute magnitudes H do not exceed 16 m. The total number of the orbits amounts to 152. Numerical calculations were performed to evaluate the evolution of the orbits over 100,000-year time interval with projects for the future. Six bodies are found to have moved from the 2:1 commensurability zone to the Centaur population. The transfer time of these bodies to the Centaur zone ranges from 4,600 to 70,000 yr. Such transfers occur after orbits leave the resonance and the bodies approach Jupiter Where after reaching sufficient orbital eccentricities bodies approach a terrestrial planet, their orbits go out of the MMR. Accuracy estimations are carried out to confirm the possible asteroid transfers to the Centaur region.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Owen R. Lehmer ◽  
David C. Catling ◽  
Joshua Krissansen-Totton

AbstractIn the conventional habitable zone (HZ) concept, a CO2-H2O greenhouse maintains surface liquid water. Through the water-mediated carbonate-silicate weathering cycle, atmospheric CO2 partial pressure (pCO2) responds to changes in surface temperature, stabilizing the climate over geologic timescales. We show that this weathering feedback ought to produce a log-linear relationship between pCO2 and incident flux on Earth-like planets in the HZ. However, this trend has scatter because geophysical and physicochemical parameters can vary, such as land area for weathering and CO2 outgassing fluxes. Using a coupled climate and carbonate-silicate weathering model, we quantify the likely scatter in pCO2 with orbital distance throughout the HZ. From this dispersion, we predict a two-dimensional relationship between incident flux and pCO2 in the HZ and show that it could be detected from at least 83 (2σ) Earth-like exoplanet observations. If fewer Earth-like exoplanets are observed, testing the HZ hypothesis from this relationship could be difficult.


Sign in / Sign up

Export Citation Format

Share Document