Heating the Solar Wind by a Magnetohydrodynamic Turbulent Energy Cascade

2008 ◽  
Vol 677 (1) ◽  
pp. L71-L74 ◽  
Author(s):  
R. Marino ◽  
L. Sorriso-Valvo ◽  
V. Carbone ◽  
A. Noullez ◽  
R. Bruno ◽  
...  
2013 ◽  
Vol 111 (20) ◽  
Author(s):  
K. T. Osman ◽  
W. H. Matthaeus ◽  
K. H. Kiyani ◽  
B. Hnat ◽  
S. C. Chapman

2007 ◽  
Vol 112 (A7) ◽  
pp. n/a-n/a ◽  
Author(s):  
Bernard J. Vasquez ◽  
Charles W. Smith ◽  
Kathleen Hamilton ◽  
Benjamin T. MacBride ◽  
Robert J. Leamon

2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2021 ◽  
Author(s):  
Rocio Manobanda ◽  
Christian Vasconez ◽  
Denise Perrone ◽  
Raffaele Marino ◽  
Dimitri Laveder ◽  
...  

<p>Structured, highly variable and virtually collision-free. Space plasma is an unique laboratory for studying the transfer of energy in a highly turbulent environment. This turbulent medium plays an important role in various aspects of the Solar--Wind generation, particles acceleration and heating, and even in the propagation of cosmic rays. Moreover, the Solar Wind continuous expansion develops a strong turbulent character, which evolves towards a state that resembles the well-known hydrodynamic turbulence (Bruno and Carbone). This turbulence is then dissipated from magnetohydrodynamic (MHD) through kinetic scales by different -not yet well understood- mechanisms. In the MHD approach, Kolmogorov-like behaviour is supported by power-law spectra and intermittency measured in observations of magnetic and velocity fluctuations. In this regime, the intermittent cross-scale energy transfer has been extensively described by the Politano--Pouquet (global) law, which is based on conservation laws of the MHD invariants, and was recently expanded to take into account the physics at the bottom of the inertial (or Hall) range, e.g. (Ferrand et al., 2019). Following the 'Turbulence Dissipation Challenge', we study the properties of the turbulent energy transfer using three different bi-dimensional numerical models of space plasma. The models, Hall-MHD (HMHD), Landau Fluid (LF) and Hybrid Vlasov-Maxwell (HVM), were ran in collisionless-plasma conditions, with an out-of-plane ambient magnetic field, and with magnetic diffusivity carefully calibrated in the fluid models. As each model has its own range of validity, it allows us to explore a long-enough range of scales at a period of maximal turbulence activity. Here, we estimate the local and global scaling properties of different energy channels using a, recently introduced, proxy of the local turbulent energy transfer (LET) rate (Sorriso-Valvo et al., 2018). This study provides information on the structure of the energy fluxes that transfers (and dissipates) most of the energy at small scales throughout the turbulent cascade. </p>


2020 ◽  
Author(s):  
Luca Sorriso-Valvo ◽  
Francesco Carbone ◽  
Daniele Telloni

<p>The fluctuations of proton density in the slow solar wind are analyzed by means of joint Empirical Mode Decomposition (EMD) and Mutual Information (MI) analysis. The analysis reveal that, within the turbulent inertial range, the EMD modes associated with nearby scales have their phases correlated, as shown by the large information exchange. This is a qunatitative measure of the information flow occurring in the turbulent cascade. On the other hand, at scales smaller than the ion gyroscale, the information flow is lost, and the mutual information is low, suggesting that in the kinetic range the nonlinear interacions are no longer sustaining a turbulent energy cascade.</p>


2020 ◽  
Author(s):  
Bertalan Zieger

<p>The solar wind in the heliosheath beyond the termination shock (TS) is a non-equilibrium collisionless plasma consisting of thermal solar wind ions, suprathermal pickup ions (PUI) and electrons. In such multi-ion plasma, two fast magnetosonic wave modes exist: the low-frequency fast mode that propagates in the thermal ion component and the high-frequency fast mode that propagates in the suprathermal PUI component [<em>Zieger et al.</em>, 2015]. Both fast modes are dispersive on fluid and ion scales, which results in nonlinear dispersive shock waves. In this talk, we briefly review the theory of dispersive shock waves in multi-ion collisionless plasma. We present high-resolution three-fluid simulations of the TS and the heliosheath up to 2.2 AU downstream of the TS. We show that downstream propagating nonlinear magnetosonic waves grow until they steepen into shocklets (thin current sheets), overturn, and start to propagate backward in the frame of the downstream propagating wave, as predicted by theory <em>[McKenzie et al</em>., 1993; <em>Dubinin et al.</em>, 2006]. The counter-propagating nonlinear waves result in fast magnetosonic turbulence far downstream of the shock. Since the high-frequency fast mode is positive dispersive on fluid scale, energy is transferred from small scales to large scales (inverse energy cascade). Thermal solar wind ions are preferentially heated by the turbulence. Forward and reverse shocklets in the heliosheath can efficiently accelerate both ions and electrons to high energies through the shock drift acceleration mechanism. We validate our three-fluid simulations with in-situ high-resolution Voyager 2 magnetic field and plasma observations at the TS and in the heliosheath. Our simulations reproduce the magnetic turbulence spectrum with a spectral slope of -5/3 observed by Voyager 2 in frequency domain [<em>Fraternale et al</em>., 2019]. However, since Taylor’s hypothesis is not true for fast magnetosonic perturbations in the heliosheath, the inertial range of the turbulence spectrum is not a Kolmogorov spectrum in wave number domain. </p>


Sign in / Sign up

Export Citation Format

Share Document