Turbulent energy transfer in bidimensional numerical models of plasma

Author(s):  
Rocio Manobanda ◽  
Christian Vasconez ◽  
Denise Perrone ◽  
Raffaele Marino ◽  
Dimitri Laveder ◽  
...  

<p>Structured, highly variable and virtually collision-free. Space plasma is an unique laboratory for studying the transfer of energy in a highly turbulent environment. This turbulent medium plays an important role in various aspects of the Solar--Wind generation, particles acceleration and heating, and even in the propagation of cosmic rays. Moreover, the Solar Wind continuous expansion develops a strong turbulent character, which evolves towards a state that resembles the well-known hydrodynamic turbulence (Bruno and Carbone). This turbulence is then dissipated from magnetohydrodynamic (MHD) through kinetic scales by different -not yet well understood- mechanisms. In the MHD approach, Kolmogorov-like behaviour is supported by power-law spectra and intermittency measured in observations of magnetic and velocity fluctuations. In this regime, the intermittent cross-scale energy transfer has been extensively described by the Politano--Pouquet (global) law, which is based on conservation laws of the MHD invariants, and was recently expanded to take into account the physics at the bottom of the inertial (or Hall) range, e.g. (Ferrand et al., 2019). Following the 'Turbulence Dissipation Challenge', we study the properties of the turbulent energy transfer using three different bi-dimensional numerical models of space plasma. The models, Hall-MHD (HMHD), Landau Fluid (LF) and Hybrid Vlasov-Maxwell (HVM), were ran in collisionless-plasma conditions, with an out-of-plane ambient magnetic field, and with magnetic diffusivity carefully calibrated in the fluid models. As each model has its own range of validity, it allows us to explore a long-enough range of scales at a period of maximal turbulence activity. Here, we estimate the local and global scaling properties of different energy channels using a, recently introduced, proxy of the local turbulent energy transfer (LET) rate (Sorriso-Valvo et al., 2018). This study provides information on the structure of the energy fluxes that transfers (and dissipates) most of the energy at small scales throughout the turbulent cascade. </p>

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Christian L. Vásconez ◽  
D. Perrone ◽  
R. Marino ◽  
D. Laveder ◽  
F. Valentini ◽  
...  

The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov–Maxwell simulations of collisionless plasmas, Hall magnetohydrodynamics and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer. This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in these kinds of plasmas.


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


Nano Letters ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. 1317-1323 ◽  
Author(s):  
I-Ju Chen ◽  
Pierre-Adrien Mante ◽  
Cheng-Kai Chang ◽  
Szu-Chi Yang ◽  
Hui-Yuan Chen ◽  
...  

2021 ◽  
Author(s):  
Jana Šafránková ◽  
Zdeněk Němeček ◽  
František Němec ◽  
Luca Franci ◽  
Alexander Pitňa

<p>The solar wind is a unique laboratory to study the turbulent processes occurring in a collisionless plasma with high Reynolds numbers. A turbulent cascade—the process that transfers the free energy contained within the large scale fluctuations into the smaller ones—is believed to be one of the most important mechanisms responsible for heating of the solar corona and solar wind. The paper analyzes power spectra of solar wind velocity, density and magnetic field fluctuations that are computed in the frequency range around the break between inertial and kinetic scales. The study uses measurements of the Bright Monitor of the Solar Wind (BMSW) on board the Spektr-R spacecraft with a time resolution of 32 ms complemented with 10 Hz magnetic field observations from the Wind spacecraft propagated to the Spektr-R location. The statistics based on more than 42,000 individual spectra show that: (1) the spectra of both quantities can be fitted by two (three in the case of the density) power-law segments; (2) the median slopes of parallel and perpendicular fluctuation velocity and magnetic field components are different; (3) the break between MHD and kinetic scales as well as the slopes are mainly controlled by the ion beta parameter. These experimental results are compared with high-resolution 2D hybrid particle-in-cell simulations, where the electrons are considered to be a massless, charge-neutralizing fluid with a constant temperature, whereas the ions are described as macroparticles representing portions of their distribution function. In spite of several limitations (lack of the electron kinetics, lower dimensionality), the model results agree well with the experimental findings. Finally, we discuss differences between observations and simulations in relation to the role of important physical parameters in determining the properties of the turbulent cascade.</p>


2003 ◽  
Vol 21 (11) ◽  
pp. 2133-2145 ◽  
Author(s):  
E. Kallio ◽  
P. Janhunen

Abstract. Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions) – Space plasma physics (numerical simulation studies)


1997 ◽  
Vol 4 (3) ◽  
pp. 185-199 ◽  
Author(s):  
T. S. Horbury ◽  
A. Balogh

Abstract. The intertmittent nature of turbulence within solar wind plasma has been demonstrated by several studies of spacecraft data. Using magnetic field data taken in high speed flows at high heliographic latitudes by the Ulysses probe, the character of fluctuations within the inertia] range is discussed. Structure functions are used extensively. A simple consideration of errors associated with calculations of high moment structure functions is shown to be useful as a practical estimate of the reliability of such calculations. For data sets of around 300 000 points, structure functions of moments above 5 are rarely reliable on the basis of this test, highlighting the importance of considering uncertainties in such calculations. When unreliable results are excluded, it is shown that inertial range polar fluctuations are well described by a multifractal model of turbulent energy transfer. Detailed consideration of the scaling of high order structure functions suggests energy transfer consistent with a "Kolmogorov" cascade.


Sign in / Sign up

Export Citation Format

Share Document