Sexually Antagonistic Selection, Sexual Dimorphism, and the Resolution of Intralocus Sexual Conflict

2009 ◽  
Vol 173 (2) ◽  
pp. 176-187 ◽  
Author(s):  
Robert M. Cox ◽  
Ryan Calsbeek
Author(s):  
Leigh W. Simmons

The reproductive interests of males and females will almost always differ, for example over whether to mate and how often, when to produce offspring and how many, or how much to invest in each offspring. Whenever the reproductive interests of males and females differ, opposing selection on males and females to achieve their preferred outcome will generate sexually antagonistic selection. Such sexual conflict is reflected in differences in the appearance and behaviour of the sexes as each evolves to gain the advantage in a fitness ‘arms race’. ‘Sexual conflict’ explores the evolutionary consequences of these arms races in the context of sexual selection as it occurs both before and after mating.


2019 ◽  
Vol 110 (4) ◽  
pp. 422-432 ◽  
Author(s):  
Joel W McGlothlin ◽  
Robert M Cox ◽  
Edmund D Brodie

Abstract Because the sexes share a genome, traits expressed in males are usually genetically correlated with the same traits expressed in females. On short timescales, between-sex genetic correlations (rmf) for shared traits may constrain the evolution of sexual dimorphism by preventing males and females from responding independently to sex-specific selection. However, over longer timescales, rmf may evolve, thereby facilitating the evolution of dimorphism. Although it has been suggested that sexually antagonistic selection may reduce rmf, we lack a general theory for the evolution of rmf and its multivariate analog, the between-sex genetic covariance matrix (B). Here, we derive a simple analytical model for the within-generation change in B due to sex-specific directional selection. We present a single-trait example demonstrating that sex-specific directional selection may either increase or decrease between-sex genetic covariance, depending on the relative strength of selection in each sex and on the current value of rmf. Although sexually antagonistic selection can reduce between-sex covariance, it will only do so when selection is much stronger in one sex than in the other. Counterintuitively, sexually antagonistic selection that is equal in strength in the 2 sexes will maintain positive between-sex covariance. Selection acting in the same direction on both sexes is predicted to reduce between-sex covariance in many cases. We illustrate our model numerically using empirical measures of sex-specific selection and between-sex genetic covariance from 2 populations of sexually dimorphic brown anole lizards (Anolis sagrei) and discuss its importance for understanding the resolution of intralocus sexual conflict.


2012 ◽  
Vol 279 (1748) ◽  
pp. 4836-4844 ◽  
Author(s):  
Stephen C. Stearns ◽  
Diddahally R. Govindaraju ◽  
Douglas Ewbank ◽  
Sean G. Byars

Because autosomal genes in sexually reproducing organisms spend on average half their time in each sex, and because the traits that they influence encounter different selection pressures in males and females, the evolutionary responses of one sex are constrained by processes occurring in the other sex. Although intralocus sexual conflict can restrict sexes from reaching their phenotypic optima, no direct evidence currently supports its operation in humans. Here, we show that the pattern of multivariate selection acting on human height, weight, blood pressure and glucose, total cholesterol, and age at first birth differs significantly between males and females, and that the angles between male and female linear (77.8 ± 20.5°) and nonlinear (99.1 ± 25.9°) selection gradients were closer to orthogonal than zero, confirming the presence of sexually antagonistic selection. We also found evidence for intralocus sexual conflict demonstrated by significant changes in the predicted male and female responses to selection of individual traits when cross-sex genetic covariances were included and a significant reduction in the angle between male- and female-predicted responses when cross-sex covariances were included (16.9 ± 15.7°), compared with when they were excluded (87.9 ± 31.6°). We conclude that intralocus sexual conflict constrains the joint evolutionary responses of the two sexes in a contemporary human population.


2011 ◽  
Vol 279 (1735) ◽  
pp. 1889-1895 ◽  
Author(s):  
Suzanne C. Mills ◽  
Esa Koskela ◽  
Tapio Mappes

Intralocus sexual conflict occurs when a trait encoded by the same genetic locus in the two sexes has different optima in males and females. Such conflict is widespread across taxa, however, the shared phenotypic traits that mediate the conflict are largely unknown. We examined whether the sex hormone, testosterone (T), that controls sexual differentiation, contributes to sexually antagonistic fitness variation in the bank vole, Myodes glareolus . We compared (opposite-sex) sibling reproductive fitness in the bank vole after creating divergent selection lines for T. This study shows that selection for T was differentially associated with son versus daughter reproductive success, causing a negative correlation in fitness between full siblings. Our results demonstrate the presence of intralocus sexual conflict for fitness in this small mammal and that sexually antagonistic selection is acting on T. We also found a negative correlation in fitness between parents and their opposite-sex progeny (e.g. father–daughter), highlighting a dilemma for females, as the indirect genetic benefits of selecting reproductively successful males (high T) are lost with daughters. We discuss mechanisms that may mitigate this disparity between progeny quality.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20202908
Author(s):  
Leslie M. Kollar ◽  
Scott Kiel ◽  
Ashley J. James ◽  
Cody T. Carnley ◽  
Danielle N. Scola ◽  
...  

A central problem in evolutionary biology is to identify the forces that maintain genetic variation for fitness in natural populations. Sexual antagonism, in which selection favours different variants in males and females, can slow the transit of a polymorphism through a population or can actively maintain fitness variation. The amount of sexually antagonistic variation to be expected depends in part on the genetic architecture of sexual dimorphism, about which we know relatively little. Here, we used a multivariate quantitative genetic approach to examine the genetic architecture of sexual dimorphism in a scent-based fertilization syndrome of the mossCeratodon purpureus.We found sexual dimorphism in numerous traits, consistent with a history of sexually antagonistic selection. The cross-sex genetic correlations (rmf) were generally heterogeneous with many values indistinguishable from zero, which typically suggests that genetic constraints do not limit the response to sexually antagonistic selection. However, we detected no differentiation between the female- and male-specific trait (co)variance matrices (GfandGm, respectively), meaning the evolution of sexual dimorphism may be constrained. The cross-sex cross-trait covariance matrixBcontained both symmetric and asymmetric elements, indicating that the response to sexually antagonistic or sexually concordant selection, and the constraint to sexual dimorphism, are highly dependent on the traits experiencing selection. The patterns of genetic variances and covariances among these fitness components is consistent with partly sex-specific genetic architectures having evolved in order to partially resolve multivariate genetic constraints (i.e. sexual conflict), enabling the sexes to evolve towards their sex-specific multivariate trait optima.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Basabi Bagchi ◽  
Quentin Corbel ◽  
Imroze Khan ◽  
Ellen Payne ◽  
Devshuvam Banerji ◽  
...  

Abstract Background Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host–pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. Results We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. Conclusions Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host–pathogen dynamics in sexually reproducing organisms.


Sign in / Sign up

Export Citation Format

Share Document