bank vole
Recently Published Documents


TOTAL DOCUMENTS

489
(FIVE YEARS 70)

H-INDEX

39
(FIVE YEARS 4)

Author(s):  
I. M. Grod ◽  
I. V. Zagorodniuk ◽  
L. O. Shevchyk ◽  
N. Ya. Kravets

Monitoring and predicting the dynamics of abundance of species living in natural habitats is an important component stability analysis of ecosystem as well as dynamics and direction of change of biotic communities under global climate change and pressure of the alien species. The aim of the work was to build a matrix model and study the state of stabilisation of the dynamics of the bank vole population within the Leslie model. The object of the study was the population dynamics of Myodes glareolus Schreber, 1780 = Clethrionomys glareolus auct. The study is based on materials obtained during 2017–2019. This period covered one phase of the long-term population dynamics of the bank vole, named “population growth”. The research was carried out according to generally accepted methods. A total of 6400 trap-days were processed, and 358 forest fistulas were collected and studied. The intensity of harmful activity of rodents is due to the variability of the number of animals in the population. The quantitative population changes are the result of three factors: births, deaths, and migrations. The main condition for the existence of the species is the stability of the population, which is determined by the action of thecompensatory mechanisms. The growth phase of the bank vole lasted all three years of the research, the quantitative indicators were respectively: 2017 – 1.8 individuals per 100 trap-days; 2018 – 2.0 individuals per 100 trap-days; 2019 – 2.7 individuals per 100 trap-days. Low levels of the abundance in the spring of each year of the study, namely at the beginning of the breeding season (3.7 – 2.6 – 8.9 individuals per 100 trap-days). Favourable for the abundance growth was the sex ratio of the population (approximately 1:1), with some rise in the share of females, which decreases on the period of spring 2018 to autumn 2019). Some decrease in the share of immature individuals (4.5 – 3.9 – 3.1 %) is an indirect confirmation of the stability of puberty of animals with subsequent replenishment of the "stock", which led to accelerated reproduction and, consequently, provided prerequisites for further population growth. The causal mechanisms of population control established by us, without a doubt, can serve as a basis for further prognosis, of the number of pests in natural habitats. To predict population changes, the Leslie model, which is widely used in mathematical analyses of the abundance of both plant and animal groups, was chosen. The algorithm for building a matrix model, detailed in the article, has five following steps. The exponential nature of the actual and projected growth of the bank vole population during the five-year cycle (2017–2019 with a prognosis until 2023) revealed in the analysis can be explained not so much by the power of the species' reproductive potential as by the lack of the significant changes in habitat, caused by constant weather conditions, low individual mortality from predators and non-communicable diseases or other accidents. The application of the matrix model allowed to confirm the key role of the main compensatory mechanisms of population dynamics, as they contribute to the stabilisation of the population and, as a consequence, are an important condition for the existence of the species.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2421
Author(s):  
Susanne Röhrs ◽  
Lineke Begeman ◽  
Beate K. Straub ◽  
Mariana Boadella ◽  
Dennis Hanke ◽  
...  

Many people worldwide suffer from hepatitis C virus (HCV) infection, which is frequently persistent. The lack of efficient vaccines against HCV and the unavailability of or limited compliance with existing antiviral therapies is problematic for health care systems worldwide. Improved small animal models would support further hepacivirus research, including development of vaccines and novel antivirals. The recent discovery of several mammalian hepaciviruses may facilitate such research. In this study, we demonstrated that bank voles (Clethrionomys glareolus) were susceptible to bank vole-associated Hepacivirus F and Hepacivirus J strains, based on the detection of hepaciviral RNA in 52 of 55 experimentally inoculated voles. In contrast, interferon α/β receptor deficient C57/Bl6 mice were resistant to infection with both bank vole hepaciviruses (BvHVs). The highest viral genome loads in infected voles were detected in the liver, and viral RNA was visualized by in situ hybridization in hepatocytes, confirming a marked hepatotropism. Furthermore, liver lesions in infected voles resembled those of HCV infection in humans. In conclusion, infection with both BvHVs in their natural hosts shares striking similarities to HCV infection in humans and may represent promising small animal models for this important human disease.


2021 ◽  
pp. 1-17
Author(s):  
Alexander Csanády ◽  
Ladislav Mošanský

Abstract The results of a craniometric analysis of the bank vole (Myodes glareolus) were evaluated in this study. Twenty cranial variables were measured and evaluated on 149 skulls (78 males, 71 females) with respect to sex and age. The main aim of this study was to test the sexual dimorphism in skull size. Overall, our results showed that on average, the values for adult and subadult females of M. glareolus were higher than for males. Results presented here thus reveal sexual differences in the measured cranial traits, most expressed for the length of the mandible and the height of the mandible. The effect size was very large for the length of the first upper molar. Comparison of our results with those from other countries confirmed that there are regional differences. These findings highlight the need for craniometric analysis of species also at the regional level.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1169
Author(s):  
Yuriy N. Davidyuk ◽  
Emmanuel Kabwe ◽  
Anton F. Shamsutdinov ◽  
Anna V. Knyazeva ◽  
Ekaterina V. Martynova ◽  
...  

In the European part of Russia, the highest number of hemorrhagic fever with renal syndrome (HFRS) cases are registered in the Volga Federal District (VFD), which includes the Republic of Tatarstan (RT). Puumala orthohantavirus (PUUV) is the main causative agent of HFRS identified in the RT. The goal of the current study is to analyze the genetic variations of the PUUV strains and possible presence of chimeric and reassortant variants among the PUUV strains circulating in bank vole populations in the Trans-Kama area of the RT. Complete S segment CDS as well as partial M and L segment coding nucleotide sequences were obtained from 40 PUUV-positive bank voles and used for the analysis. We found that all PUUV strains belonged to RUS genetic lineage and clustered in two subclades corresponding to the Western and Eastern Trans-Kama geographic areas. PUUV strains from Western Trans-Kama were related to the previously identified strain from Teteevo in the Pre-Kama area. It can be suggested that the PUUV strains were introduced to the Teteevo area as a result of the bank voles’ migration from Western Trans-Kama. It also appears that physical obstacles, including rivers, could be overcome by migrating rodents under favorable circumstances. Based on results of the comparative and phylogenetic analyses, we propose that bank vole distribution in the Trans-Kama area occurred upstream along the river valleys, and that watersheds could act as barriers for migrations. As a result, the diverged PUUV strains could be formed in closely located populations. In times of extensive bank vole population growth, happening every 3–4 years, some regions of watersheds may become open for contact between individual rodents from neighboring populations, leading to an exchange of the genetic material between divergent PUUV strains.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1164
Author(s):  
Guillaume Castel ◽  
Elodie Monchatre-Leroy ◽  
Marc López-Roig ◽  
Séverine Murri ◽  
Mathilde Couteaudier ◽  
...  

In Europe, Puumala virus (PUUV) transmitted by the bank vole (Myodes glareolus) is the causative agent of nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome. In France, very little is known about the spatial and temporal variability of the virus circulating within bank vole populations. The present study involved monitoring of bank vole population dynamics and PUUV microdiversity over a ten-year period (2000–2009) in two forests of the Ardennes region: Elan and Croix-Scaille. Ardennes region is characterised by different environmental conditions associated with different NE epidemiology. Bank vole density and population parameters were estimated using the capture/marking/recapture method, and blood samples were collected to monitor the overall seroprevalence of PUUV in rodent populations. Phylogenetic analyses of fifty-five sequences were performed to illustrate the genetic diversity of PUUV variants between forests. The pattern of the two forests differed clearly. In the Elan forest, the rodent survival was higher, and this limited turn-over resulted in a lower seroprevalence and diversity of PUUV sequences than in the Croix-Scaille forest. Uncovering the links between host dynamics and virus microevolution is improving our understanding of PUUV distribution in rodents and the NE risk.


2021 ◽  
Vol 29 (3) ◽  
pp. 211-216
Author(s):  
S. A. Мyakushko

Fifty years of continuous monitoring of the bank vole population (Myodes glareolus Schreber, 1780) revealed the phenomenon of shrinking body size of individuals, manifesting in significant reduction in their regular size and mass parameters. Field observations were carried out in the Kaniv Nature Reserve (Cherkasy region, Ukraine) during the first half of summer every year. In the forest biotopes of the reserve, this species is dominant in the group of rodents. The research period covered various stages of the existence of the protected ecosystem. Its small area, location ina densely populated region of Ukraine and interaction with neighboring territories which are involved in economic activities have always caused anthropogenic pressure on the protected area. Its nature and intensity determined the changes in the protection regime and the loss of reserve status in 1951–1968. Later, the territory of the reserve experienced increasing technogenic pressure accompanied by radioactive contamination. In this work, to compare their characteristics, four complete cycles of the density dynamics of the bank vole population (from depression to depression) were selected, the duration of which was 4–5 years. The first three cycles correspond to qualitatively different periods in the existence of the ecosystem and the population of the studied species, and the last one corresponds to the relatively current situation. Over the recent 30 years, the size and mass parameters of individuals of bank voles have deсreased, - this phenomenon was called shrinking. The process was also observed to tend towards consistent increase in scale. Differentiated analysis shows that in different sex and functional groups of animals, the decrease in exterior parameters can reach 30.3%. Shrinking is especially notable in the group of adult females that are actively involved in reproduction (compared to the second cycle, considered as the control, the decrease in parameters among these is 33.2%). Juveniles of this sex lost 31.8% of their fatness. Besides, in the population of voles, the proportion of large-size individuals was significantly reduced. The group of animals that overwintered significantly reduced its representation, and its existing representatives had much smaller exterior parameters. The studies found that the shrinking process is stable over time, which does not allow it to be considered a random phenomenon or an artifact of research. This phenomenon has no correlation with the amount or availability of food. It occurs against the background of numerous changes in various aspects of population dynamics, which gives grounds to associate it with anthropogenic changes in the environment. Shrinking is believed to be realized through various mechanisms. Firstly, as a result of mortality, the largest individuals and reproducing females with the greatest energy needs disappear from the population, and secondly, the growth and weight gain of young animals is slower. As a result, decrease in the size and mass parameters of individuals reduces their specific energy needs and allows the population to bring their requirements in correspondance with the capability of the environment to support a certain number of resource consumers. An analogy was drawn with the Dehnel’s phenomenon, described for shrews of the Sorex genus, whose body size and weight decrease is an element of preparation for experiencing adverse winter conditions. Based on similar concepts, the shrinking of its elements can be considered as a specific population strategy to maintain the ecological balance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahdi Aminikhah ◽  
Jukka T. Forsman ◽  
Esa Koskela ◽  
Tapio Mappes ◽  
Jussi Sane ◽  
...  

AbstractZoonotic diseases, caused by pathogens transmitted between other vertebrate animals and humans, pose a major risk to human health. Rodents are important reservoir hosts for many zoonotic pathogens, and rodent population dynamics affect the infection dynamics of rodent-borne diseases, such as diseases caused by hantaviruses. However, the role of rodent population dynamics in determining the infection dynamics of rodent-associated tick-borne diseases, such as Lyme borreliosis (LB), caused by Borrelia burgdorferi sensu lato bacteria, have gained limited attention in Northern Europe, despite the multiannual abundance fluctuations, the so-called vole cycles, that characterise rodent population dynamics in the region. Here, we quantify the associations between rodent abundance and LB human cases and Puumala Orthohantavirus (PUUV) infections by using two time series (25-year and 9-year) in Finland. Both bank vole (Myodes glareolus) abundance as well as LB and PUUV infection incidence in humans showed approximately 3-year cycles. Without vector transmitted PUUV infections followed the bank vole host abundance fluctuations with two-month time lag, whereas tick-transmitted LB was associated with bank vole abundance ca. 12 and 24 months earlier. However, the strength of association between LB incidence and bank vole abundance ca. 12 months before varied over the study years. This study highlights that the human risk to acquire rodent-borne pathogens, as well as rodent-associated tick-borne pathogens is associated with the vole cycles in Northern Fennoscandia, yet with complex time lags.


2021 ◽  
Author(s):  
Karla A. Schwenke ◽  
Joo-Hee Waelzlein ◽  
Agnieszka Bauer ◽  
Achim Thomzig ◽  
Michael Beekes

Since the beginning prion research has been largely dependent on animal models for deciphering the disease, drug development or prion detection and quantification. Thereby, ethical as well as cost and labour-saving aspects call for alternatives in vitro. Cell models can replace or at least complement animal studies, but their number is still limited and the application usually restricted to certain strains and host species due to often strong transmission barriers. Bank voles promise to be an exception as they or materials prepared from them are uniquely susceptible to prions from various species in vivo, in vitro and in cell-free applications. Here we present a mainly astrocyte-based primary glia cell assay from bank vole, which is infectible with scrapie strains from bank vole, mouse and hamster. Stable propagation of bank vole-adapted RML, murine 22L and RML, and hamster 263K scrapie is detectable from 20 or 30 days post exposure onwards. Thereby, the infected bank vole glia cells show similar or even faster prion propagation than likewise infected glia cells of the corresponding murine or hamster hosts. We propose that our bank vole glia cell assay could be a versatile tool for studying and comparing multiple prion strains with different species backgrounds in a single cell assay.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carl Soulsbury

The behavioural patterns of small mammalian prey species have been shown to be widely impacted by predator avoidance. Cues to avoid predation may come from the predator itself or environmental cues, such as moonlight and available vegetative cover. We investigated how the activity of the bank vole Myodes glareolus, field vole Microtus agrestis, wood mouse Apodemus sylvaticus and the common shrew Sorex araneus were impacted by changes in habitat and lunar light conditions across a range of habitats (mainly grassland protected sites) in Lincolnshire (UK). Microhabitat vegetation density as well as weather conditions were recorded across all trap sites, with Longworth traps set overnight and the successfully captured species recorded the following morning. Overnight temperature was found to positively influence capture rate across all species. The lunar phase was found to significantly impact capture rate, with the gibbous lunar phase providing the highest capture rate across species. The interaction between illumination and vegetation density was also found to impact activity levels in the bank vole and wood mouse, with the bank vole showing higher activity in thick vegetation at low light levels and across habitats at higher light levels, whereas wood mice were more often captured in intermediate cover at low and intermediate illumination but across a range of habitats at brighter illumination. In combination, it suggests that small mammal activity is altered to potentially reduce predation risk. However, in this community at least, brighter lunar illumination leads to increase activity.  


Sign in / Sign up

Export Citation Format

Share Document