scholarly journals Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam’s Rule for the Global Carbon Tax

2016 ◽  
Vol 3 (2) ◽  
pp. 493-522 ◽  
Author(s):  
Armon Rezai ◽  
Frederick Van der Ploeg
Author(s):  
Frederick van der Ploeg

The social rate of discount is a crucial driver of the social cost of carbon (SCC), that is, the expected present discounted value of marginal damages resulting from emitting one ton of carbon today. Policy makers should set carbon prices to the SCC using a carbon tax or a competitive permits market. The social discount rate is lower and the SCC higher if policy makers are more patient and if future generations are less affluent and policy makers care about intergenerational inequality. Uncertainty about the future rate of growth of the economy and emissions and the risk of macroeconomic disasters (tail risks) also depress the social discount rate and boost the SCC provided intergenerational inequality aversion is high. Various reasons (e.g., autocorrelation in the economic growth rate or the idea that a decreasing certainty-equivalent discount rate results from a discount rate with a distribution that is constant over time) are discussed for why the social discount rate is likely to decline over time. A declining social discount rate also emerges if account is taken from the relative price effects resulting from different growth rates for ecosystem services and of labor in efficiency units. The market-based asset pricing approach to carbon pricing is contrasted with a more ethical approach to policy making. Some suggestions for further research are offered.


Author(s):  
Lovel Kukuljan ◽  
Franci Gabrovšek ◽  
Matthew D. Covington ◽  
Vanessa E. Johnston

AbstractUnderstanding the dynamics and distribution of CO2 in the subsurface atmosphere of carbonate karst massifs provides important insights into dissolution and precipitation processes, the role of karst systems in the global carbon cycle, and the use of speleothems for paleoclimate reconstructions. We discuss long-term microclimatic observations in a passage of Postojna Cave, Slovenia, focusing on high spatial and temporal variations of pCO2. We show (1) that the airflow through the massif is determined by the combined action of the chimney effect and external winds and (2) that the relationship between the direction of the airflow, the geometry of the airflow pathways, and the position of the observation point explains the observed variations of pCO2. Namely, in the terminal chamber of the passage, the pCO2 is low and uniform during updraft, when outside air flows to the site through a system of large open galleries. When the airflow reverses direction to downdraft, the chamber is fed by inlets with diverse flow rates and pCO2, which enter via small conduits and fractures embedded in a CO2-rich vadose zone. If the spatial distribution of inlets and outlets produces minimal mixing between low and high pCO2 inflows, high and persistent gradients in pCO2 are formed. Such is the case in the chamber, where vertical gradients of up to 1000 ppm/m are observed during downdraft. The results presented in this work provide new insights into the dynamics and composition of the subsurface atmosphere and demonstrate the importance of long-term and spatially distributed observations.


Author(s):  
Warwick J. McKibbin ◽  
Peter J. Wilcoxen ◽  
Weifeng Liu
Keyword(s):  

2021 ◽  
Author(s):  
Rick Stafford ◽  
Zach Boakes ◽  
Alice Hall ◽  
Georgia Jones

Abstract The ocean is a net sequester of carbon dioxide, predominantly through low biomass, high productivity phytoplankton photosynthesis. Selective removal of predatory fish through extractive fishing alters the community structure of the ocean, with an increased biomass of more productive, low trophic level fish and higher overall respiration rates, despite possible decreases in total fish biomass. High pressure fishing on predators may result in as much as a 19% increase in respiration from fish communities and could prove highly significant in global carbon budgets.


Author(s):  
Richard Stafford ◽  
Zach Boakes ◽  
Alice E. Hall ◽  
Georgia C. A. Jones

AbstractTotal ocean carbon exceeds 40,000 GT either dissolved in the water column or buried in ocean sediments, and the ocean continues to sequester carbon from the atmosphere. Selective removal of predatory fish through extractive fishing alters the community structure of the ocean. This altered community results in increased biomass of more productive, low trophic level fish, higher overall fish respiration rates and lower carbon sequestration rates from fish, despite possible decreases in total fish biomass. High-pressure fishing on high trophic level fish, a globally occurring phenomenon, may result in as much as a 19% increase in respiration from fish communities overall. This increase in respiration will reduce sequestration rates and could prove highly significant in global carbon budgets. Preliminary estimates suggest a loss of sequestration equating to around 90Mt C.year−1 (~ 10% of total ocean sequestration or ~ 1% of anthropogenic fossil fuel emissions per year). Ultimately, to reduce these carbon emissions, fishing needs to be carbon optimised, alongside other fisheries management outcomes, which may mean that fewer higher trophic level fish are removed. This study highlights the potential magnitude of fishing on ocean carbon dynamics and presents the key uncertainties (including understanding the effects of fishing on zoo- and phytoplankton communities) we need to urgently research to accurately quantify the effects and model future fishing practices. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document