scholarly journals ABSOLUTE PROPERTIES OF THE ECLIPSING TRIPLE STAR CO ANDROMEDAE: CONSTRAINTS ON CONVECTIVE CORE OVERSHOOTING

2010 ◽  
Vol 139 (6) ◽  
pp. 2347-2359 ◽  
Author(s):  
Claud H. Sandberg Lacy ◽  
Guillermo Torres ◽  
Antonio Claret ◽  
David Charbonneau ◽  
Francis T. O’Donovan ◽  
...  
Keyword(s):  
1997 ◽  
Vol 485 (1) ◽  
pp. 350-358 ◽  
Author(s):  
Ning Liu ◽  
Douglas R. Gies ◽  
Ying Xiong ◽  
Reed L. Riddle ◽  
William G. Bagnuolo, Jr. ◽  
...  

Author(s):  
William J Henney ◽  
J A López ◽  
Ma T García-Díaz ◽  
M G Richer

Abstract We carry out a comprehensive kinematic and morphological study of the asymmetrical planetary nebula: NGC 6210, known as the Turtle. The nebula’s spectacularly chaotic appearance has led to proposals that it was shaped by mass transfer in a triple star system. We study the three-dimensional structure and kinematics of its shells, lobes, knots, and haloes by combining radial velocity mapping from multiple long-slit spectra with proper motion measurements from multi-epoch imaging. We find that the nebula has five distinct ejection axes. The first is the axis of the bipolar, wind-blown inner shell, while the second is the axis of the lop-sided, elliptical, fainter, but more massive intermediate shell. A further two axes are bipolar flows that form the point symmetric, high-ionization outer lobes, all with inclinations close to the plane of the sky. The final axis, which is inclined close to the line of sight, traces collimated outflows of low-ionization knots. We detect major changes in outflow directions during the planetary nebula phase, starting at or before the initial ionization of the nebula 3500 years ago. Most notably, the majority of redshifted low-ionization knots have kinematic ages greater than 2000 years, whereas the majority of blueshifted knots have ages younger than 2000 years. Such a sudden and permanent 180-degree flip in the ejection axis at a relatively late stage in the nebular evolution is a challenge to models of planetary nebula formation and shaping.


2007 ◽  
Author(s):  
N. A. Featherstone ◽  
M. K. Browning ◽  
A. S. Brun ◽  
J. Toomre ◽  
Richard J. Stancliffe ◽  
...  

2018 ◽  
Vol 615 ◽  
pp. A62 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti

Aims. The capability of grid-based techniques to estimate the age together with the convective core overshooting efficiency of stars in detached eclipsing binary systems for main sequence stars has previously been investigated. We have extended this investigation to later evolutionary stages and have evaluated the bias and variability on the recovered age and convective core overshooting parameter accounting for both observational and internal uncertainties. Methods. We considered synthetic binary systems, whose age and overshooting efficiency should be recovered by applying the SCEPtER pipeline to the same grid of models used to build the mock stars. We focus our attention on a binary system composed of a 2.50 M⊙ primary star coupled with a 2.38 M⊙ secondary. To explore different evolutionary scenarios, we performed the estimation at three different times: when the primary is at the end of the central helium burning, when it is at the bottom of the RGB, and when it is in the helium core burning phase. The Monte Carlo simulations have been carried out for two typical values of accuracy on the mass determination, that is, 1% and 0.1%. Results. Adopting typical observational uncertainties, we found that the recovered age and overshooting efficiency are biased towards low values in all three scenarios. For an uncertainty on the masses of 1%, the underestimation is particularly relevant for a primary in the central helium burning stage, reaching − 8.5% in age and − 0.04 (− 25% relative error) in the overshooting parameter β. In the other scenarios, an undervaluation of the age by about 4% occurs. A large variability in the fitted values between Monte Carlo simulations was found: for an individual system calibration, the value of the overshooting parameter can vary from β = 0.0 to β = 0.26. When adopting a 0.1% error on the masses, the biases remain nearly unchanged but the global variability is suppressed by a factor of about two. We also explored the effect of a systematic discrepancy between the artificial systems and the model grid by accounting for an offset in the effective temperature of the stars by ± 150 K. For a mass error of 1% the overshooting parameter is largely biased towards the edges of the explored range, while for the lower mass uncertainty it is basically unconstrained from 0.0 to 0.2. We also evaluate the possibility of individually recovering the β value for both binary stars. We found that this is impossible for a primary near to central hydrogen exhaustion owing to huge biases for the primary star of + 0.14 (90% relative error), while in the other cases the fitted β are consistent, but always biased by about − 0.04 (− 25% relative error). Finally, the possibility to distinguish between models computed with mild overshooting from models with no overshooting was evaluated, resulting in a reassuring power of distinction greater than 80%. However, the scenario with a primary in the central helium burning was a notable exception, showing a power of distinction lower than 5%.


2017 ◽  
Vol 600 ◽  
pp. A41 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti

1988 ◽  
Vol 108 ◽  
pp. 99-100
Author(s):  
Masa-aki Kondo

Concerning the scattering of OB stars in the HR diagram (Humphry 1980), the effects of overshooting of convective core (Maeder 1984), mass loss (cf. chiosi and Maeder 1986), and generous stability criterion of semi-convection (Stothers and Chin 1976) have been discussed. Here, we will note the dredge up effect is caused by the sound waves emitted from a convective core.The sound mode of nonradial oscillation, with the spherical harmonics Ylm(θ, ϕ) and the frequency ω, can exist in the propagation zone, where the bottom boundary locates at the position of , and the upper boundary does near the photosphere. Here, Ll is called as the Lamb frequency, and cs is the sound velocity.


2020 ◽  
Vol 644 ◽  
pp. A114
Author(s):  
M. Kasper ◽  
K. K. R. Santhakumari ◽  
T. M. Herbst ◽  
R. van Boekel ◽  
F. Menard ◽  
...  

Aims. T Tauri remains an enigmatic triple star for which neither the evolutionary state of the stars themselves, nor the geometry of the complex outflow system is completely understood. Eight-meter class telescopes equipped with state-of-the-art adaptive optics provide the spatial resolution necessary to trace tangential motion of features over a timescale of a few years, and they help to associate them with the different outflows. Methods. We used J-, H-, and K-band high-contrast coronagraphic imaging with VLT-SPHERE recorded between 2016 and 2018 to map reflection nebulosities and obtain high precision near-infrared (NIR) photometry of the triple star. We also present H2 emission maps of the ν = 1-0 S(1) line at 2.122 μm obtained with LBT-LUCI during its commissioning period at the end of 2016. Results. The data reveal a number of new features in the system, some of which are seen in reflected light and some are seen in H2 emission; furthermore, they can all be associated with the main outflows. The tangential motion of the features provides compelling evidence that T Tauri Sb drives the southeast–northwest outflow. T Tauri Sb has recently faded probably because of increased extinction as it passes through the southern circumbinary disk. While Sb is approaching periastron, T Tauri Sa instead has brightened and is detected in all our J-band imagery for the first time.


Sign in / Sign up

Export Citation Format

Share Document