scholarly journals A triple star in disarray

2020 ◽  
Vol 644 ◽  
pp. A114
Author(s):  
M. Kasper ◽  
K. K. R. Santhakumari ◽  
T. M. Herbst ◽  
R. van Boekel ◽  
F. Menard ◽  
...  

Aims. T Tauri remains an enigmatic triple star for which neither the evolutionary state of the stars themselves, nor the geometry of the complex outflow system is completely understood. Eight-meter class telescopes equipped with state-of-the-art adaptive optics provide the spatial resolution necessary to trace tangential motion of features over a timescale of a few years, and they help to associate them with the different outflows. Methods. We used J-, H-, and K-band high-contrast coronagraphic imaging with VLT-SPHERE recorded between 2016 and 2018 to map reflection nebulosities and obtain high precision near-infrared (NIR) photometry of the triple star. We also present H2 emission maps of the ν = 1-0 S(1) line at 2.122 μm obtained with LBT-LUCI during its commissioning period at the end of 2016. Results. The data reveal a number of new features in the system, some of which are seen in reflected light and some are seen in H2 emission; furthermore, they can all be associated with the main outflows. The tangential motion of the features provides compelling evidence that T Tauri Sb drives the southeast–northwest outflow. T Tauri Sb has recently faded probably because of increased extinction as it passes through the southern circumbinary disk. While Sb is approaching periastron, T Tauri Sa instead has brightened and is detected in all our J-band imagery for the first time.

2020 ◽  
Vol 641 ◽  
pp. A33
Author(s):  
E. Rigliaco ◽  
R. Gratton ◽  
Á. Kóspál ◽  
D. Mesa ◽  
V. D’Orazi ◽  
...  

Context. EX Lup is a well-studied T Tauri star that represents the prototype of young eruptive stars known as EXors. They are characterized by repetitive outbursts that are due to enhanced accretion from the circumstellar disk onto the star. In this paper, we analyze new adaptive optics imaging and spectroscopic observations to study EX Lup and its circumstellar environment in near-infrared in its quiescent phase. Aims. We aim to provide a comprehensive understanding of the circumstellar environment around EX Lup in quiescence, building upon the vast store of data provided by the literature. Methods. We observed EX Lup in quiescence with the high contrast imager SPHERE/IRDIS in the dual-beam polarimetric imaging mode to resolve the circumstellar environment in near-infrared scattered light. We complemented the data with earlier SINFONI spectroscopy, which was also taken in quiescence. Results. We resolve, for the first time in scattered light, a compact feature around EX Lup azimuthally extending from ~280° to ~360° and radially extending from ~0.3′′ to ~0.55′′ in the plane of the disk. We explore two different scenarios for the detected emission. The first one accounts for the emission as coming from the brightened walls of the cavity excavated by the outflow whose presence was suggested by ALMA observations in the J = 3−2 line of 12CO. The second attributes the emission to an inclined disk. In this latter case, we detect, for the first time, a more extended circumstellar disk in scattered light, which shows that a region between ~10 and ~30 au is depleted of μm-size grains. We compare the J-, H-, and K-band spectra obtained with SINFONI in quiescence with the spectra taken during the outburst, showing that all the emission lines result from the episodic accretion event. Conclusions. Based on the morphology analysis, we favor the scenario that assumes the scattered light is coming from a circumstellar disk rather than the outflow around EX Lup. We determine the origin of the observed feature as either coming from a continuous circumstellar disk with a cavity, from the illuminated wall of the outer disk, or from a shadowed disk. Moreover, we discuss the potential origins of the depleted region of μm-size grains, exploring the possibility that a sub-stellar companion may be the source of this feature.


2020 ◽  
Vol 501 (2) ◽  
pp. 2305-2315
Author(s):  
Alice Zurlo ◽  
Lucas A Cieza ◽  
Megan Ansdell ◽  
Valentin Christiaens ◽  
Sebastián Pérez ◽  
...  

ABSTRACT We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus molecular cloud with NACO at the Very Large Telescope (VLT) to identify (sub)stellar companions down to ∼20-au separation and investigate the effects of multiplicity on circumstellar disc properties. We observe for the first time in the NIR with AO a total of 47 targets and complement our observations with archival data for another 58 objects previously observed with the same instrument. All 105 targets have millimetre Atacama Large Millimetre/sub-millimetre Array (ALMA) data available, which provide constraints on disc masses and sizes. We identify a total of 13 multiple systems, including 11 doubles and 2 triples. In agreement with previous studies, we find that the most massive (Mdust > 50 M⊕) and largest (Rdust > 70 au) discs are only seen around stars lacking visual companions (with separations of 20–4800 au) and that primaries tend to host more massive discs than secondaries. However, as recently shown in a very similar study of >200 PMS stars in the Ophiuchus molecular cloud, the distributions of disc masses and sizes are similar for single and multiple systems for Mdust < 50 M⊕ and radii Rdust < 70 au. Such discs correspond to ∼80–90 per cent of the sample. This result can be seen in the combined sample of Lupus and Ophiuchus objects, which now includes more than 300 targets with ALMA imaging and NIR AO data, and implies that stellar companions with separations >20 au mostly affect discs in the upper 10${{\ \rm per\ cent}}$ of the disc mass and size distributions.


2018 ◽  
Vol 617 ◽  
pp. L2 ◽  
Author(s):  
A. Müller ◽  
M. Keppler ◽  
Th. Henning ◽  
M. Samland ◽  
G. Chauvin ◽  
...  

Context. The observation of planets in their formation stage is a crucial but very challenging step in understanding when, how, and where planets form. PDS 70 is a young pre-main sequence star surrounded by a transition disk, in the gap of which a planetary-mass companion has recently been discovered. This discovery represents the first robust direct detection of such a young planet, possibly still at the stage of formation. Aims. We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods. We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 yr, which allowed us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96–3.8 μm). We use different atmospheric models covering a large parameter space in temperature, log g, chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results. PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range 1000–1600 K and log g no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 RJ with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions. This study provides a comprehensive data set on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical of young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planetflux.


2006 ◽  
Vol 2 (S235) ◽  
pp. 405-405
Author(s):  
Marc Huertas-Company ◽  
Daniel Rouan ◽  
Geneviève Soucail ◽  
Olivier Le Fèvre ◽  
Lidia Tasca

AbstractWe present the results of observations of distant galaxies (z ~ 0.8) at high spatial resolution (~0.1"). We observed 7 fields of 1' × 1' with the NACO Adaptive Optics system (VLT) in Ks (2.2μm) band with typical V ~ 14 guide stars and 3h integration time per field. Observed fields are selected within the COSMOS survey area. We analyze the morphologies by means of B/D (Bulge/Disk) decomposition with GIM2D and CAS (Concentration-Asymmetry) estimators for 79 galaxies with magnitudes between Ks = 17 − 23 and classify them in three main morphological types (Late Type, Early Type and Irregulars). We obtain for the first time an estimate of the distribution of galaxy types at redshift z ~ 1 as measured from the near infrared at high spatial resolution.


2018 ◽  
Vol 14 (S345) ◽  
pp. 318-319
Author(s):  
M. Mugrauer ◽  
C. Ginski ◽  
N. Vogt ◽  
R. Neuhäuser

AbstractWe carried out a high contrast imaging search for (sub)stellar companions of young pre-main sequence stars in the Lupus star forming region. For this project we utilized NACO/ESO-VLT, operated at the Paranal observatory. On this poster, we presented the results of this survey. In several observing campaigns we could obtain diffraction limited deep IR imaging data and detected faint co-moving companions around our targets, whose astro- and photometry was determined in all observing epochs. The co-moving companions found in our survey exhibit angular separations in the range between about 0.1 and a few arcsecs, i.e. projected separations between about 10 and a few hundreds of au, at the average distance of our targets of about 140 pc. Beside several new binary and triple star systems, whose multiplicity was revealed in this survey, also faint co-moving companions in the substellar mass regime could be identified close to some of our targets.


2018 ◽  
Vol 614 ◽  
pp. A88 ◽  
Author(s):  
M. Langlois ◽  
A. Pohl ◽  
A.-M. Lagrange ◽  
A.- L. Maire ◽  
D. Mesa ◽  
...  

Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims. Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods. We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9–1.3 μm). Results. We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.


2021 ◽  
Author(s):  
Nolan Grieves ◽  
François Bouchy ◽  
René Doyon ◽  
Etienne Artigau ◽  
Lison Malo ◽  
...  

<p>The Near-InfraRed Planet Searcher (NIRPS) is designed to be an ultra-stable infrared spectrograph to be installed on ESO’s 3.6 m Telescope in La Silla, Chile. NIRPS is an adaptive optics (AO) fiber-fed spectrograph operating from 0.98 to 1.8 μm and will be operated simultaneously with the optical high-resolution spectrograph HARPS. NIRPS can operate in two modes fed by two different fiber links permanently mounted at the Cassegrain focus that use either 0.4 arcsecond-fibers for the High Accuracy Mode (HAM) or 0.9 arcsecond-fibers for the High Efficiency Mode (HEM). The wavelength range of NIRPS is optimal for low-mass M dwarfs and the simultaneous NIRPS and HARPS observations will improve stellar activity filtering methods given their different wavelength coverages. The NIRPS front-end and AO system were already tested on-sky at La Silla. The spectrograph and back-end is being shipped to La Silla and installed in Summer/Fall 2021. Already we have adapted the state-of-the-art ESPRESSO data reduction pipeline for NIRPS, obtained accurate wavelength solutions with a Uranium Neon lamp, and obtained drift stability results below 50 cm/s with a Fabry–Pérot etalon. We discuss the current and expected instrument performance and the expected results of NIRPS.</p>


2003 ◽  
Vol 599 (2) ◽  
pp. L117
Author(s):  
Elise Furlan ◽  
William J. Forrest ◽  
Dan M. Watson ◽  
Keven I. Uchida ◽  
Bernhard R. Brandl ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. L10 ◽  
Author(s):  
F. Cantalloube ◽  
E. H. Por ◽  
K. Dohlen ◽  
J.-F. Sauvage ◽  
A. Vigan ◽  
...  

The latest generation of high-contrast instruments dedicated to exoplanets and circumstellar disk imaging are equipped with extreme adaptive optics and coronagraphs to reach contrasts of up to 10−4 at a few tenths of arcseconds in the near-infrared. The resulting image shows faint features, only revealed with this combination, such as the wind driven halo. The wind driven halo is due to the lag between the adaptive optics correction and the turbulence speed over the telescope pupil. However, we observe an asymmetry of this wind driven halo that was not expected when the instrument was designed. In this letter, we describe and demonstrate the physical origin of this asymmetry and support our explanation by simulating the asymmetry with an end-to-end approach. From this work, we find that the observed asymmetry is explained by the interference between the AO-lag error and scintillation effects, mainly originating from the fast jet stream layer located at about 12 km in altitude. Now identified and interpreted, this effect can be taken into account for further design of high-contrast imaging simulators, next generation or upgrade of high-contrast instruments, predictive control algorithms for adaptive optics, or image post-processing techniques.


2014 ◽  
Vol 14 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Jacopo Farinato ◽  
Carlo Baffa ◽  
Andrea Baruffolo ◽  
Maria Bergomi ◽  
Luca Carbonaro ◽  
...  

AbstractSHARK is a proposal aimed at investigating the technical feasibility and the scientific capabilities of high-contrast cameras to be implemented at the Large Binocular Telescope (LBT). SHARK foresees two separated channels: near-infrared (NIR) channel and visible, both providing imaging and coronagraphic modes. We describe here the SHARK instrument concept, with particular emphasis on the NIR channel at the level of a conceptual study, performed in the framework of the call for proposals for new LBT instruments. The search for giant extra-Solar planets is the main science case, as we will outline in the paper.


Sign in / Sign up

Export Citation Format

Share Document