scholarly journals A RELATIONSHIP BETWEEN SUPERMASSIVE BLACK HOLE MASS AND THE TOTAL GRAVITATIONAL MASS OF THE HOST GALAXY

2009 ◽  
Vol 704 (2) ◽  
pp. 1135-1145 ◽  
Author(s):  
Kaushala Bandara ◽  
David Crampton ◽  
Luc Simard
2009 ◽  
Vol 400 (4) ◽  
pp. 1803-1807 ◽  
Author(s):  
Y. Watabe ◽  
N. Kawakatu ◽  
M. Imanishi ◽  
T. T. Takeuchi

2007 ◽  
Vol 665 (1) ◽  
pp. 120-156 ◽  
Author(s):  
M. C. Aller ◽  
D. O. Richstone

2019 ◽  
Vol 15 (S359) ◽  
pp. 37-39
Author(s):  
Benjamin L. Davis ◽  
Nandini Sahu ◽  
Alister W. Graham

AbstractOur multi-component photometric decomposition of the largest galaxy sample to date with dynamically-measured black hole masses nearly doubles the number of such galaxies. We have discovered substantially modified scaling relations between the black hole mass and the host galaxy properties, including the spheroid (bulge) stellar mass, the total galaxy stellar mass, and the central stellar velocity dispersion. These refinements partly arose because we were able to explore the scaling relations for various sub-populations of galaxies built by different physical processes, as traced by the presence of a disk, early-type versus late-type galaxies, or a Sérsic versus core-Sérsic spheroid light profile. The new relations appear fundamentally linked with the evolutionary paths followed by galaxies, and they have ramifications for simulations and formation theories involving both quenching and accretion.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


Author(s):  
Timothy S Hamilton ◽  
Marco Berton ◽  
Sonia Antón ◽  
Lorenzo Busoni ◽  
Alessandro Caccianiga ◽  
...  

Abstract The γ-ray emitting galaxy SBS 0846 + 513 has been classified as a Narrow-Line Seyfert 1 (NLS1) from its spectroscopy, and on that basis would be thought likely to have a small central black hole hosted in a spiral galaxy. But very few of the γ-ray NLS1 have high-resolution imaging of their hosts, so it is unknown how the morphology expectation holds up for the γ-emitting class. We have observed this galaxy in the J-band with the Large Binocular Telescope’s LUCI1 camera and the ARGOS adaptive optics system. We estimate its black hole mass to lie between $4.2\times 10^7 \le \frac{\text{M}}{\text{M}_\odot } \le 9.7\times 10^7$, using the correlation with bulge luminosity, or $1.9\times 10^7 \le \frac{\text{M}}{\text{M}_\odot } \le 2.4\times 10^7$ using the correlation with Sérsic index. Our favoured estimate is 4.2 × 107M⊙, putting its mass at the high end of the NLS1 range in general but consistent with others that are γ-ray emitters. These estimates are independent of the Broad Line Region viewing geometry and avoid any underestimates due to looking down the jet axis. Its host shows evidence of a bulge + disc structure, from the isophote shape and residual structure in the nuclear-subtracted image. This supports the idea that γ-ray NLS1 may be spiral galaxies, like their non-jetted counterparts.


2014 ◽  
Vol 10 (S313) ◽  
pp. 329-330
Author(s):  
A. Olguín-Iglesias ◽  
J. León-Tavares ◽  
V. Chavushyan ◽  
E. Valtaoja ◽  
C. Añorve ◽  
...  

AbstractWe explore the connection between the black hole mass and its relativistic jet for a sample of radio-loud AGN (z < 1), in which the relativistic jet parameters are well estimated by means of long term monitoring with the 14m Metsähovi millimeter wave telescope and the Very Long Base-line Array (VLBA). NIR host galaxy images taken with the NOTCam on the Nordic Optical Telescope (NOT) and retrieved from the 2MASS all-sky survey allowed us to perform a detailed surface brightness decomposition of the host galaxies in our sample and to estimate reliable black hole masses via their bulge luminosities. We present early results on the correlations between black hole mass and the relativistic jet parameters. Our preliminary results suggest that the more massive the black hole is, the faster and the more luminous jet it produces.


2017 ◽  
Vol 473 (3) ◽  
pp. 3818-3834 ◽  
Author(s):  
Timothy A. Davis ◽  
Martin Bureau ◽  
Kyoko Onishi ◽  
Freeke van de Voort ◽  
Michele Cappellari ◽  
...  

2020 ◽  
Vol 6 (12) ◽  
pp. eaaz1310 ◽  
Author(s):  
Michael D. Johnson ◽  
Alexandru Lupsasca ◽  
Andrew Strominger ◽  
George N. Wong ◽  
Shahar Hadar ◽  
...  

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.


Sign in / Sign up

Export Citation Format

Share Document