scholarly journals SEMIEMPIRICAL MODELS OF THE SOLAR ATMOSPHERE. III. SET OF NON-LTE MODELS FOR FAR-ULTRAVIOLET/EXTREME-ULTRAVIOLET IRRADIANCE COMPUTATION

2009 ◽  
Vol 707 (1) ◽  
pp. 482-502 ◽  
Author(s):  
J. M. Fontenla ◽  
W. Curdt ◽  
M. Haberreiter ◽  
J. Harder ◽  
H. Tian
1998 ◽  
Vol 504 (2) ◽  
pp. L127-L130 ◽  
Author(s):  
J. Zhang ◽  
S. M. White ◽  
M. R. Kundu

1987 ◽  
Vol 34 (11) ◽  
pp. 1491-1500 ◽  
Author(s):  
M.A. Barstow ◽  
B.J. Kent ◽  
M.J. Whiteley ◽  
P.H. Spurrett

2010 ◽  
Vol 37 (16) ◽  
pp. n/a-n/a ◽  
Author(s):  
Stanley C. Solomon ◽  
Thomas N. Woods ◽  
Leonid V. Didkovsky ◽  
John T. Emmert ◽  
Liying Qian

Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter discusses how there are four general factors that contribute to the Sun's potential role in variations in the Earth's climate. First, the fusion processes in the solar core determine the solar luminosity and hence the base level of radiation impinging on the Earth. Second, the presence of the solar magnetic field leads to radiation at ultraviolet (UV), extreme ultraviolet (EUV), and X-ray wavelengths which can affect certain layers of the atmosphere. Third, the variability of the magnetic field over a 22-year cycle leads to significant changes in the radiative output at some wavelengths. Finally, the interplanetary manifestation of the outer solar atmosphere (the solar wind) interacts with the terrestrial magnetic field, leading to effects commonly called space weather.


1984 ◽  
Vol 86 ◽  
pp. 72-75
Author(s):  
Jeffrey L. Linsky

For the past year a Joint Working Group of NASA and ESA scientists and engineers has been defining the scientific objectives and instrument parameters for a proposed satellite to obtain far and extreme ultraviolet spectra of stars, interstellar gas, solar system objects, and galaxies. The project, now called Columbus, incorporates the scientific goals of the previously proposed NASA Far Ultraviolet Spectrograph Explorer (FUSE) and ESA Magellan missions.The prime spectral range of Columbus, 900–1200 Å, cannot be observed by IUE or Space Telescope. In this spectral range Copernicus was able to observe bright stars (mv ≤ 6) with high resolution and the Hopkins Ultraviolet Telescope (HUT) will observe faint sources at low resolution, but Columbus will be the first instrument capable of high spectral resolution observations of faint sources (mv ≈ 17). High resolution spectra in the 900–1200 Å region will permit studies of the Lyman lines of atomic H and D, the molecules H2 and HD, resonance lines of C III and O VI, and other species listed in Table 1. Columbus also is being designed to observe the 1200–2000 Å spectral region at high resolution, permitting measurements of many stages of ionization for the same atom (i.e. N I, II, III, V; C II, III, IV; and S II, III, IV, VI). The broad coverage of ionization states is essential for the analysis of interstellar and stellar plasmas where the ionization balance can be quite complex.


1997 ◽  
Vol 180 ◽  
pp. 136-136
Author(s):  
J. Zweigle ◽  
M. Grewing ◽  
J. Barnstedt ◽  
M. Gölz ◽  
W. Gringel ◽  
...  

During the ORFEUS-SPAS (Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer on the Shuttle Pallet Satellite) mission STS-51, flown in September 1993, we observed the central star of the planetary nebula NGC 6543 in the far ultraviolet (90 nm to 115 nm) wavelength region using the University of California, Berkeley spectrometer with a spectral resolution of 0.03 nm.


1988 ◽  
Vol 102 ◽  
pp. 63-66
Author(s):  
S. Labov ◽  
S. Bowyer

AbstractObservations in the far ultraviolet and soft x-ray bands suggest that the interstellar medium contains several components of high temperature gas (105to 106K). If large volumes of local interstellar space are filled with this hot plasma, emission lines will be produced in the extreme ultraviolet (EUV). Diffuse EUV radiation, however, has only been detected with photometric instruments; no spectral measurements exist below 520Å. We have designed a unique grazing incidence spectrometer to study the diffuse emission between 80 and 650Å with 10 to 30Å resolution. This instrument was successfully flown on a sounding rocket in April of 1986 and a preliminary analysis reveals several features. In addition to the expected interplanetary He I 584Å emission and the geocoronal He II 304Å emission, other features appear which may originate in the hot ionized interstellar gas. These features are discussed along with the possible implications to the hot phase of the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document