scholarly journals STAR FORMATION EFFICIENCY IN THE BARRED SPIRAL GALAXY NGC 4303

2010 ◽  
Vol 721 (1) ◽  
pp. 383-394 ◽  
Author(s):  
Rieko Momose ◽  
Sachiko K. Okumura ◽  
Jin Koda ◽  
Tsuyoshi Sawada
2016 ◽  
Vol 461 (2) ◽  
pp. 1684-1700 ◽  
Author(s):  
Yusuke Fujimoto ◽  
Greg L. Bryan ◽  
Elizabeth J. Tasker ◽  
Asao Habe ◽  
Christine M. Simpson

1998 ◽  
Vol 15 (1) ◽  
pp. 149-151
Author(s):  
T. Hasegawa ◽  
S. Sakamoto ◽  
S. Nishiura ◽  
Y. Ohyama ◽  
Y. Sofue

AbstractWe report Hα imaging observations of nearby galaxies with the Kiso Schmidt telescope. For spiral galaxy NGC 628, we found no clear correlation between Hα and CO intensities, and we discuss the star formation efficiency of this galaxy. No nuclear Hα emission in this galaxy was detected. This is consistent with spectroscopic observations which indicate that the nuclear region is in the post starburst phase. We also describe the Hα image of Hickson's compact group 92 in which diffuse emission is detected extending within the group system.


Science ◽  
2019 ◽  
Vol 365 (6452) ◽  
pp. 478-482 ◽  
Author(s):  
Dorota M. Skowron ◽  
Jan Skowron ◽  
Przemek Mróz ◽  
Andrzej Udalski ◽  
Paweł Pietrukowicz ◽  
...  

The Milky Way is a barred spiral galaxy, with physical properties inferred from various tracers informed by the extrapolation of structures seen in other galaxies. However, the distances of these tracers are measured indirectly and are model-dependent. We constructed a map of the Milky Way in three dimensions, based on the positions and distances of thousands of classical Cepheid variable stars. This map shows the structure of our Galaxy’s young stellar population and allows us to constrain the warped shape of the Milky Way’s disk. A simple model of star formation in the spiral arms reproduces the observed distribution of Cepheids.


2007 ◽  
Vol 59 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Kazuyuki Muraoka ◽  
Kotaro Kohno ◽  
Tomoka Tosaki ◽  
Nario Kuno ◽  
Kouichiro Nakanishi ◽  
...  

2019 ◽  
Vol 488 (4) ◽  
pp. 4674-4689 ◽  
Author(s):  
Fiorenzo Vincenzo ◽  
Chiaki Kobayashi ◽  
Tiantian Yuan

ABSTRACTWe present gas and stellar kinematics of a high-resolution zoom-in cosmological chemodynamical simulation, which fortuitously captures the formation and evolution of a star-forming barred spiral galaxy, from redshift z ∼ 3 to z ∼ 2 at the peak of the cosmic star formation rate. The galaxy disc grows by accreting gas and substructures from the environment. The spiral pattern becomes fully organized when the gas settles from a thick (with vertical dispersion σv > 50 km s−1) to a thin (σv ∼ 25 km s−1) disc component in less than 1 Gyr. Our simulated disc galaxy also has a central X-shaped bar, the seed of which formed by the assembly of dense gas-rich clumps by z ∼ 3. The star formation activity in the galaxy mainly happens in the bulge and in several clumps along the spiral arms at all redshifts, with the clumps increasing in number and size as the simulation approaches z = 2. We find that stellar populations with decreasing age are concentrated towards lower galactic latitudes, being more supported by rotation, and having also lower velocity dispersion; furthermore, the stellar populations on the thin disc are the youngest and have the highest average metallicities. The pattern of the spiral arms rotates like a solid body with a constant angular velocity as a function of radius, which is much lower than the angular velocity of the stars and gas on the thin disc; moreover, the angular velocity of the spiral arms steadily increases as a function of time, always keeping its radial profile constant. The origin of our spiral arms is also discussed.


2000 ◽  
Vol 120 (3) ◽  
pp. 1289-1305 ◽  
Author(s):  
R. Buta ◽  
Patrick M. Treuthardt ◽  
G. G. Byrd ◽  
D. A. Crocker

2019 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Yoshiyuki Yajima ◽  
Kazuo Sorai ◽  
Nario Kuno ◽  
Kazuyuki Muraoka ◽  
Yusuke Miyamoto ◽  
...  

AbstractWe present the results of $^{12}\textrm{C}$$\textrm{O}$(J = 1–0) and $^{13}\textrm{C}$$\textrm{O}$(J = 1–0) simultaneous mappings toward the nearby barred spiral galaxy NGC 4303 as part of the CO Multi-line Imaging of Nearby Galaxies (COMING) project. Barred spiral galaxies often show lower star-formation efficiency (SFE) in their bar region compared to the spiral arms. In this paper, we examine the relation between the SFEs and the volume densities of molecular gas n(H2) in the eight different regions within the galactic disk with $\textrm{C}$$\textrm{O}$ data combined with archival far-ultraviolet and 24 μm data. We confirmed that SFE in the bar region is lower by 39% than that in the spiral arms. Moreover, velocity-alignment stacking analysis was performed for the spectra in the individual regions. Integrated intensity ratios of $^{12}\textrm{C}$$\textrm{O}$ to $^{13}\textrm{C}$$\textrm{O}$ (R12/13) ranging from 10 to 17 were the results of this stacking. Fixing a kinetic temperature of molecular gas, $n(\rm {H_2})$ was derived from R12/13 via non-local thermodynamic equilibrium (non-LTE) analysis. The density n(H2) in the bar is lower by 31%–37% than that in the arms and there is a rather tight positive correlation between SFEs and n(H2), with a correlation coefficient of ∼0.8. Furthermore, we found a dependence of $n(\rm {H}_2)$ on the velocity dispersion of inter-molecular clouds (ΔV/sin i). Specifically, n(H2) increases as ΔV/sin i increases when ΔV/sin i < 100 km s−1. On the other hand, n(H2) decreases as ΔV/sin i increases when ΔV/sin i > 100 km s−1. These relations indicate that the variations of SFE could be caused by the volume densities of molecular gas, and the volume densities could be governed by the dynamical influence such as cloud–cloud collisions, shear, and enhanced inner-cloud turbulence.


2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.


Sign in / Sign up

Export Citation Format

Share Document