THE INFORMATION OF THE MILKY WAY FROM TWO MICRON ALL SKY SURVEY WHOLE SKY STAR COUNT: THE LUMINOSITY FUNCTION

2010 ◽  
Vol 724 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Chan-Kao Chang ◽  
Chung-Ming Ko ◽  
Ting-Hung Peng
2012 ◽  
Vol 758 (1) ◽  
pp. L23 ◽  
Author(s):  
Sarah R. Loebman ◽  
Željko Ivezić ◽  
Thomas R. Quinn ◽  
Fabio Governato ◽  
Alyson M. Brooks ◽  
...  

2008 ◽  
Vol 686 (1) ◽  
pp. 279-291 ◽  
Author(s):  
S. Koposov ◽  
V. Belokurov ◽  
N. W. Evans ◽  
P. C. Hewett ◽  
M. J. Irwin ◽  
...  

2013 ◽  
Vol 9 (S298) ◽  
pp. 404-404
Author(s):  
Cuihua Du ◽  
Yunpeng Jia ◽  
Xiyan Peng

AbstractBased on the South Galactic Cap U-band Sky Survey (SCUSS) and SDSS observation, we adopted the star-count method to analyze the stellar distribution in different directions of the Galaxy. We find that these model parameters may be variable with observed direction, which cannot simply be attributed to statistical errors.


2022 ◽  
Vol 258 (1) ◽  
pp. 20
Author(s):  
Iminhaji Ablimit ◽  
Gang Zhao ◽  
Uy. Teklimakan ◽  
Jian-Rong Shi ◽  
Kunduz Abdusalam

Abstract In order to study the Milky Way, RR Lyrae (RRL) variable stars identified by Gaia, ASAS-SN, and ZTF sky survey projects have been analyzed as tracers in this work. Photometric and spectroscopic information of 3417 RRLs including proper motions, radial velocity, and metallcity are obtained from observational data of Gaia, LAMOST, GALAH, APOGEE, and RAVE. Precise distances of RRLs with typical uncertainties less than 3% are derived by using a recent comprehensive period–luminosity–metallicity relation. Our results from kinematical and chemical analysis provide important clues for the assembly history of the Milky Way, especially for the Gaia–Sausage ancient merger. The kinematical and chemical trends found in this work are consistent with those of recent simulations that indicated that the Gaia–Sausage merger had a dual origin in the Galactic thick disk and halo. As recent similar works have found, the halo RRL sample in this work contains a subset of radially biased orbits besides a more isotropic component. This higher orbital anisotropy component amounts to β ≃ 0.8, and it contributes between 42% and 83% of the halo RRLs at 4 < R( kpc) < 20.


2020 ◽  
Vol 492 (4) ◽  
pp. 5297-5312 ◽  
Author(s):  
Eliab Malefahlo ◽  
Mario G Santos ◽  
Matt J Jarvis ◽  
Sarah V White ◽  
Jonathan T L Zwart

ABSTRACT We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 &lt; z &lt; 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 25.5$ and becomes steeper again below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 24.8$, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible.


2019 ◽  
Vol 871 (2) ◽  
pp. 258 ◽  
Author(s):  
Jan-Torge Schindler ◽  
Xiaohui Fan ◽  
Ian D. McGreer ◽  
Jinyi Yang ◽  
Feige Wang ◽  
...  

1995 ◽  
Vol 110 ◽  
pp. 2553 ◽  
Author(s):  
J. D. Kennefick ◽  
S. G. Djorgovski ◽  
R. R. de Carvalho

1984 ◽  
Vol 78 ◽  
pp. 315-324
Author(s):  
Richard G. Kron

The number of stars counted along a particular line of sight depends on the spatial distribution of stars, the luminosity function, and the absorption. Thus star count programs are designed to constrain or determine one or more of these functions. Early efforts to understand the structure of our Galaxy, including the fundamentals of stellar statistics, were largely based on work that involved star counts. Since then a growing appreciation has developed for the variety of forms the density function D(r) and the luminosity function Φ(M) can take, especially the recognition of different stellar populations, each with different density and luminosity functions. In the simplest formulation two distinct populations are considered: disk and halo. This suggests two distinct formation histories, but uncertainty in the picture remains (Eggen, Lynden-Bell and Sandage 1962; Ostriker and Thuan 1975; Saio and Yoshii 1979; Jones and Wyse 1983).


Sign in / Sign up

Export Citation Format

Share Document