scholarly journals ON THE ONSET OF SECONDARY STELLAR GENERATIONS IN GIANT STAR-FORMING REGIONS AND MASSIVE STAR CLUSTERS

2014 ◽  
Vol 792 (2) ◽  
pp. 105 ◽  
Author(s):  
J. Palouš ◽  
R. Wünsch ◽  
G. Tenorio-Tagle
2003 ◽  
Vol 212 ◽  
pp. 642-651 ◽  
Author(s):  
Daniel Schaerer

We review our current knowledge on the IMF in nearby environments, massive star forming regions, super star clusters, starbursts and alike objects from studies of integrated light, and discuss the various techniques used to constrain the IMF. In most cases, including UV-optical studies of stellar features and optical-IR analysis of nebular emission, the data is found to be compatible with a ‘universal’ Salpeter-like IMF with a high upper mass cut-off over a large metallicity range. In contrast, near-IR observations of nuclear starbursts and LIRG show indications of a lowerMupand/or a steeper IMF slope, for which no alternate explanation has yet been found. Also, dynamical mass measurements of seven super star clusters provide so far no simple picture of the IMF. Finally, we present recent results of a direct stellar probe of the upper end of the IMF in metal-rich H ii regions, showing no deficiency of massive stars at high metallicity, and determining a lower limit ofMup≳ 60 – 90 M⊙.


Author(s):  
Shinji Fujita ◽  
Hidetoshi Sano ◽  
Rei Enokiya ◽  
Katsuhiro Hayashi ◽  
Mikito Kohno ◽  
...  

Abstract Herein, we present results from observations of the 12CO (J = 1–0), 13CO (J = 1–0), and 12CO (J = 2–1) emission lines toward the Carina nebula complex (CNC) obtained with the Mopra and NANTEN2 telescopes. We focused on massive-star-forming regions associated with the CNC including the three star clusters Tr 14, Tr 15, and Tr 16, and the isolated WR-star HD 92740. We found that the molecular clouds in the CNC are separated into mainly four clouds at velocities −27, −20, −14, and −8 km s−1. Their masses are 0.7 × 104 M⊙, 5.0 × 104 M⊙, 1.6 × 104 M⊙, and 0.7 × 104 M⊙, respectively. Most are likely associated with the star clusters, because of their high 12CO (J = 2–1)/12CO (J = 1–0) intensity ratios and their correspondence to the Spitzer 8 μm distributions. In addition, these clouds show the observational signatures of cloud–cloud collisions. In particular, there is a V-shaped structure in the position–velocity diagram and a complementary spatial distribution between the −20 km s−1 cloud and the −14 km s−1 cloud. Furthermore, we found that SiO emission, which is a tracer of a shocked molecular gas, is enhanced between the colliding clouds by using ALMA archive data. Based on these observational signatures, we propose a scenario wherein the formation of massive stars in the clusters was triggered by a collision between the two clouds. By using the path length of the collision and the assumed velocity separation, we estimate the timescale of the collision to be ∼1 Myr. This is comparable to the ages of the clusters estimated in previous studies.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


2006 ◽  
Vol 2 (S237) ◽  
pp. 408-408
Author(s):  
Richard de Grijs

Young, massive star clusters (YMCs) are the most notable and significant end products of violent star-forming episodes triggered by galaxy collisions and close encounters. The question remains, however, whether or not at least a fraction of the compact YMCs seen in abundance in extragalactic starbursts, are potentially the progenitors of (≳10 Gyr) old globular cluster (GC)-type objects. If we could settle this issue convincingly, one way or the other, the implications of such a result would have far-reaching implications for a wide range of astrophysical questions, including our understanding of the process of galaxy formation and assembly, and the process and conditions required for star (cluster) formation. Because of the lack of a statistically significant sample of YMCs in the Local Group, however, we need to resort to either statistical arguments or to the painstaking approach of case-by-case studies of individual objects in more distant galaxies.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2018 ◽  
Vol 477 (2) ◽  
pp. 2455-2469 ◽  
Author(s):  
N Cunningham ◽  
S L Lumsden ◽  
T J T Moore ◽  
L T Maud ◽  
I Mendigutía

2010 ◽  
Vol 521 ◽  
pp. L37 ◽  
Author(s):  
L. Chavarría ◽  
F. Herpin ◽  
T. Jacq ◽  
J. Braine ◽  
S. Bontemps ◽  
...  

2007 ◽  
Vol 666 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Guido Garay ◽  
Diego Mardones ◽  
Kate J. Brooks ◽  
Liza Videla ◽  
Yanett Contreras

2009 ◽  
Vol 693 (1) ◽  
pp. 424-429 ◽  
Author(s):  
A. Brunthaler ◽  
M. J. Reid ◽  
K. M. Menten ◽  
X. W. Zheng ◽  
L. Moscadelli ◽  
...  

2009 ◽  
Vol 698 (1) ◽  
pp. 488-501 ◽  
Author(s):  
Esteban F. E. Morales ◽  
Diego Mardones ◽  
Guido Garay ◽  
Kate J. Brooks ◽  
Jaime E. Pineda

Sign in / Sign up

Export Citation Format

Share Document