Inelastic collisions between high Rydberg (n≈40) and ground-state rubidium atoms at thermal energies

1983 ◽  
Vol 16 (14) ◽  
pp. 2531-2538 ◽  
Author(s):  
M Hugon ◽  
F Gounand ◽  
P R Fournier ◽  
J Berlande
1982 ◽  
Vol 25 (2) ◽  
pp. 834-841 ◽  
Author(s):  
R. H. Hill ◽  
H. A. Schuessler ◽  
B. G. Zollars

1968 ◽  
Vol 46 (19) ◽  
pp. 2127-2131 ◽  
Author(s):  
M. Stupavsky ◽  
L. Krause

3 2P1/2 ↔ 3 2P3/2 excitation transfer in sodium, induced in inelastic collisions with ground-state N2, H2, HD, and D2 molecules, has been investigated in a series of sensitized fluorescence experiments. Mixtures of sodium vapor at a pressure of 5 × 10−7 Torr, and the gases, were irradiated with each NaD component in turn, and the fluorescence which contained both D components was monitored at right angles to the direction of the exciting beam. Measurements of the relative intensities of the NaD fluorescent components yielded the following collision cross sections for excitation transfer. For Na–N2 collisions: Q12(2P1/2 → P3/2) = 144 Å2, Q21(2P1,2 ← 2P3/2) = 76 Å2 for Na–H2 collisions: Q12 = 80 Å2, Q21 = 42 Å2. For Na–HD collisions: Q12 = 84 Å2, Q21 = 44 Å2. For Na–D2 collisions: Q12 = 98 Å2, Q21 = 52 Å2. The cross sections Q21 exhibit a slight resonance effect between the atomic and molecular rotational transitions.


1973 ◽  
Vol 51 (3) ◽  
pp. 257-265 ◽  
Author(s):  
I. N. Siara ◽  
L. Krause

Excitation transfer between the 62P fine-structure substates in rubidium, induced in inelastic collisions with ground-state molecules, has been studied using techniques of sensitized fluorescence. Rubidium vapor in mixtures with various molecular gases was irradiated with each component of the 2P rubidium doublet in turn, and measurements of sensitized-to-resonance fluorescent intensity ratios yielded the following mixing cross sections Q12(2P1/2 → 2P3/2) and Q21(2P1/2 ← 2P3/2), as well as effective quenching cross sections Q1X(2P1/2 → 2XJ″) and Q2X(2P3/2 → 2XJ″). For collisions with H2: Q12(2P1/2 → 2P3/2) = (41 ± 5) Å2; Q21(2P1/2 ← 2P3/2) = (26 ± 3) Å2; Q1X(2P1/2 → 2XJ″) = (36 ± 9) Å2; Q2X(2P3/2 → 2XJ″) = (31 ± 8) Å2. For HD: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (47 ± 13) Å2; Q2X = (38 ± 10) Å2. For D2: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (28 ± 8) Å2; Q2X = (21 ± 7) Å2. For N2: Q12 = (107 ± 15) Å2; Q21 = (70 ± 10) Å2; Q1X = (128 ± 44) Å2; Q2X = (126 ± 33) Å2. For CH4: Q12 = (38 ± 6) Å2; Q21 = (24 ± 3) Å2; Q1X = (129 ± 41) Å2; Q2X = (114 ± 37) Å2. For CD4: Q12 = (52 ± 7) Å2; Q21 = (34 ± 5) Å2; Q1X = (82 ± 30) Å2; Q2X = (76 ± 22) Å2. An analysis of these results suggests the possibility of resonances with various molecular rotational and vibrational transitions.


2000 ◽  
Vol 62 (2) ◽  
Author(s):  
B. Bieniak ◽  
K. Fronc ◽  
S. Gateva-Kostova ◽  
M. Głódź ◽  
V. Grushevsky ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Björn Drews ◽  
Markus Deiß ◽  
Krzysztof Jachymski ◽  
Zbigniew Idziaszek ◽  
Johannes Hecker Denschlag

2012 ◽  
Vol 109 (22) ◽  
Author(s):  
Scott T. Sullivan ◽  
Wade G. Rellergert ◽  
Svetlana Kotochigova ◽  
Eric R. Hudson

2016 ◽  
Vol 94 (4) ◽  
pp. 431-436
Author(s):  
S.A. Elkilany

Inelastic collisions of protons with rubidium atoms are treated for the first time within the framework of the three channel coupled static, and frozen core approximations. The method is used for calculating partial and total cross sections with the assumption that only three channels (elastic; non-excited hydrogen, 1s-state; and excited hydrogen, 2s-state) are open. We have used the Lipmann–Schwinger equation and the Green’s functions iterative numerical method technique to solve the derived coupled integro-differential equations to obtain the computer code. The present results for total hydrogen formation cross sections are in agreement with results of other available ones in a wide range of incident energy.


Sign in / Sign up

Export Citation Format

Share Document