Thermodynamic constraints on temperature distribution in a stationary system with heat engine or refrigerator

2006 ◽  
Vol 39 (19) ◽  
pp. 4269-4277 ◽  
Author(s):  
A M Tsirlin ◽  
V Kazakov ◽  
A A Ahremenkov ◽  
N A Alimova
IJOSTHE ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 7
Author(s):  
Swarnik Mehar ◽  
Pankaj Mishra

If the heat in the heat engine is not removed properly, it causes the development of the detonation and eventually reduces the efficiency of the engine, so that the heat dissipation rate of the cylinder an important and interesting task is the option. The cylinder of the engine is one of the most important automotive components, variations of high temperature and thermal loads. To cool the cylinder, the ribs are provided on the surface of the cylinder, to increase the rate of heat transfer. By a thermal analysis of the motor cylinder and the ribs that surround it, it is useful to know the heat transfer rate and the temperature distribution inside the cylinder. We know that we can increase the heat dissipation rate by increasing the surface so it is very difficult to design such a complex motor. The main objective of this project is to analyze thermal properties such as thermal directed flow, total heat flow and temperature distribution. The cooling mechanism of the air cooled engine depends mainly on the design of the cylinder head and the block ribs. The cooling fins are used to increase the heat transfer rate of the specified surface. The life and efficiency of the engine can be improved by efficient cooling. The finite element method was used using the ANSYS software as a simulation tool for analysis.


Sign in / Sign up

Export Citation Format

Share Document