Characterization of alpha particle loss during disruptions in TFTR during deuterium-tritium operation

1996 ◽  
Vol 36 (4) ◽  
pp. 475-494 ◽  
Author(s):  
A.C Janos ◽  
E.D Fredrickson ◽  
R.V Budny ◽  
D.S Darrow ◽  
K.M McGuire ◽  
...  
Keyword(s):  
2020 ◽  
Vol 86 (2) ◽  
Author(s):  
Christopher G. Albert ◽  
Sergei V. Kasilov ◽  
Winfried Kernbichler

Accelerated statistical computation of collisionless fusion alpha particle losses in stellarator configurations is presented based on direct guiding-centre orbit tracing. The approach relies on the combination of recently developed symplectic integrators in canonicalized magnetic flux coordinates and early classification into regular and chaotic orbit types. Only chaotic orbits have to be traced up to the end, as their behaviour is unpredictable. An implementation of this technique is provided in the code SIMPLE (symplectic integration methods for particle loss estimation, Albert et al., 2020b, doi:10.5281/zenodo.3666820). Reliable results were obtained for an ensemble of 1000 orbits in a quasi-isodynamic, a quasi-helical and a quasi-axisymmetric configuration. Overall, a computational speed up of approximately one order of magnitude is achieved compared to direct integration via adaptive Runge–Kutta methods. This reduces run times to the range of typical magnetic equilibrium computations and makes direct alpha particle loss computation adequate for use within a stellarator optimization loop.


2009 ◽  
Vol 9 (2) ◽  
pp. 325-333 ◽  
Author(s):  
B. Narasimham ◽  
M.J. Gadlage ◽  
B.L. Bhuva ◽  
R.D. Schrimpf ◽  
L.W. Massengill ◽  
...  

2017 ◽  
Vol 138 ◽  
pp. 81-86 ◽  
Author(s):  
M. El Ghazaly ◽  
Abdulkadir Aydarous ◽  
Talal A. Al-Thomali
Keyword(s):  

1995 ◽  
Vol 35 (12) ◽  
pp. 1445-1455 ◽  
Author(s):  
S.J Zweben ◽  
D.S Darrow ◽  
H.W Herrmann ◽  
M.H Redi ◽  
J.F Schivell ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document