Three-dimensional Monte Carlo simulations of W7-X plasma transport: density control and particle balance in steady-state operations

2005 ◽  
Vol 45 (8) ◽  
pp. 825-836 ◽  
Author(s):  
D Sharma ◽  
Y Feng ◽  
F Sardei ◽  
D Reiter
1998 ◽  
Vol 376 ◽  
pp. 149-182 ◽  
Author(s):  
MICHAEL B. MACKAPLOW ◽  
ERIC S. G. SHAQFEH

The sedimentation of fibre suspensions at low Reynolds number is studied using two different, but complementary, numerical simulation methods: (1) Monte Carlo simulations, which consider interparticle hydrodynamic interactions at all orders within the slender-body theory approximation (Mackaplow & Shaqfeh 1996), and (ii) dynamic simulations, which consider point–particle interactions and are accurate for suspension concentrations of nl3=1, where n and l are the number density and characteristic half-length of the fibres, respectively. For homogeneous, isotropic suspensions, the Monte Carlo simulations show that the hindrance of the mean sedimentation speed is linear in particle concentration up to at least nl3=7. The speed is well predicted by a new dilute theory that includes the effect of two-body interactions. Our dynamic simulations of dilute suspensions, however, show that interfibre hydrodynamic interactions cause the spatial and orientational distributions to become inhomogeneous and anisotropic. Most of the fibres migrate into narrow streamers aligned in the direction of gravity. This drives a downward convective flow within the streamers which serves to increase the mean fibre sedimentation speed. A steady-state orientation distribution develops which strongly favours fibre alignment with gravity. Although the distribution reaches a steady state, individual fibres continue to rotate in a manner that can be qualitatively described as a flipping between the two orientations aligned with gravity. The simulation results are in good agreement with published experimental data.


2021 ◽  
Author(s):  
Masahide Sato

Abstract Performing isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model. The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between them. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when q < 1. With increasing q, the clusters become chain-like. When q increases further, elongated clusters and regular polygonal clusters are created. In hte simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


2012 ◽  
Vol 190 ◽  
pp. 39-42
Author(s):  
M. Medvedeva ◽  
Pavel V. Prudnikov

The dynamic critical behavior of the three-dimensional Heisenberg model with longrangecorrelated disorder was studied by using short-time Monte Carlo simulations at criticality.The static and dynamic critical exponents are determined. The simulation was performed fromordered initial state. The obtained values of the exponents are in a good agreement with resultsof the field-theoretic description of the critical behavior of this model in the two-loopapproximation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahide Sato

AbstractPerforming isothermal-isochoric Monte Carlo simulations, I examine the types of clusters that dumbbell-like one–patch particles form in thin space between two parallel walls, assuming that each particle is synthesized through the merging of two particles, one non-attracting and the other attracting for which, for example, the inter-particle interaction is approximated by the DLVO model . The shape of these dumbbell-like particles is controlled by the ratio of the diameters q of the two spherical particles and by the dimensionless distance l between these centers. Using a modified Kern–Frenkel potential, I examine the dependence of the cluster shape on l and q. Large island-like clusters are created when $$q<1$$ q < 1 . With increasing q, the clusters become chain-like . When q increases further, elongated clusters and regular polygonal clusters are created. In the simulations, the cluster shape becomes three-dimensional with increasing l because the thickness of the thin system increases proportionally to l.


1996 ◽  
Vol 181 (2) ◽  
pp. 422-428 ◽  
Author(s):  
Akira Satoh ◽  
Roy W. Chantrell ◽  
Shin-Ichi Kamiyama ◽  
Geoff N. Coverdale

Sign in / Sign up

Export Citation Format

Share Document