Study of motion of crack faces, load point displacement stress intensity factor and plastic zone size by using laser speckle photography

1996 ◽  
Vol 27 (2) ◽  
pp. 61-70 ◽  
Author(s):  
C Shakher ◽  
D Ravi
2015 ◽  
Vol 662 ◽  
pp. 169-172
Author(s):  
Lucie Malíková

Three cracked geometries loaded in mode I are investigated and the plastic zone size calculated. For estimation of the plastic zone size, two fracture criteria are used (Rankine and von Mises). Whereas the classical criteria give the same results (the stress intensity factor being identical for each geometry), the data from numerical simulations exhibit differences for various geometries. It is shown that the multi-parameter form of the criteria enables to obtain results that agree better to the numerical ones. Particularly, the Williams expansion is utilized for approximation of the stress components that serve as inputs for the fracture criteria. It is concluded that taking into account several more initial terms of the series can help to predict the plastic zone size more accurately.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


2021 ◽  
Vol 87 (2) ◽  
pp. 56-64
Author(s):  
G. Pluvinage

Different stress distributions for an elastic behavior are presented as analytical expressions for an ideal crack, a sharp notch and a blunt notch. The elastic plastic distribution at a blunt notch tip is analyzed. The concept of the notch stress intensity factor is deduced from the definition of the effective stress and the effective distance. The impacts of the notch radius and constraint on the critical notch stress intensity factor are presented. The paper ends with the presentation of the crack driving force Jρ for a notch in the elastic case and the impact of the notch radius on the notch fracture toughness Jρ,c. The notch fracture toughness Jρ,c is a measure of the fracture resistance which increases linearly with the notch radius due to the plastic work in the notch plastic zone. If this notch plastic zone does not invade totally the ligament, the notch fracture toughness Jρ,c is constant. This occurs when the notch radius is less than a critical one and there is no need to use the cracked specimen to measure a lower bound of the fracture resistance.


1992 ◽  
Vol 36 ◽  
pp. 551-560
Author(s):  
Kazuyuki Matsui ◽  
Osamu Nakada ◽  
Yukio Hirose ◽  
Keisuke Tanaka

AbstractTo evaluate the plastic zones of dynamic fracture, instrumented Charpy impact tests of high carbon bearing steels are conducted. The amount of plastic zone size left on the fracture surface is evaluated from the X-ray diffraction profiles. An analysis is presented of the relationship between the X-ray diffraction profiles and fracture mechanics parameters. The results are discussed in correlations between dynamic stress intensity factor and absorbed energy values. A good correlation exists between the plastic zone size and the dynamic stress intensity factor.The fraction of retained austenite is determined from X-ray diffraction profiles at surfaces of fractures and also beneath the surfaces of fractures.It shows the work hardening is introduced by the strain energy in the plastic zones. The values of the proportionality constant, α, determined for various kinds of dynamic fracture are related to half-value breadth by the functionwhere B0 and BF are average of half-value breadth which are given by core of material and plastic zone of dynamic fracture.


Author(s):  
Sang-Min Lee ◽  
Jeong-Soon Park ◽  
Jin-Su Kim ◽  
Young-Hwan Choi ◽  
Hae-Dong Chung

Elastic-plastic fracture mechanics as well as linear-elastic fracture mechanics may be applied to evaluate a flaw in ferritic low alloy steel components for operating conditions when the material fracture resistance is controlled by upper shelf toughness behavior. In this paper, the distribution of the stress intensity factor along a corner crack using elastic-plastic fracture mechanics technique is investigated to assess the effect of a structural factor on mechanical loads in pressurizer vent nozzle penetration weld. For this purpose, the stress intensity factor and plastic zone correction of a corner crack are calculated under internal pressure, thermal stress and residual stress in accordance with Electric Power Research Institute (EPRI) equation and Irwin’s approach, respectively. The resulting stress intensity factor and plastic zone correction were compared with those obtained from Structural Integrity Associates (SIA) and Kinectrics, and were observed to be good agreement with Kinectrics results.


CORROSION ◽  
10.5006/3711 ◽  
2021 ◽  
Author(s):  
Hamid Niazi ◽  
Greg Nelson ◽  
Lyndon Lamborn ◽  
Reg Eadie ◽  
Weixing Chen ◽  
...  

Pipelines undergo sequential stages before failure caused by High pH Stress Corrosion Cracking (HpHSCC). These sequential stages are incubation stage, intergranular crack initiation (Stage 1a), crack evolution to provide the condition for mechanically driven crack growth (Stage 1b), sustainable mechanically driven crack propagation (Stage 2), and rapid crack propagation to failure (Stage 3). The crack propagation mechanisms in Stage 1b are composed of the nucleation and growth of secondary cracks on the free surface and crack coalescence of secondary cracks with one another and the primary crack. These mechanisms continue until the stress intensity factor (<i>K</i>) at the crack tip reaches a critical value, known as <i>K</i><sub>ISCC</sub>. This investigation took a novel approach to study Stage 1b in using pre-cracked Compact Tension (CT) specimens. Using pre-cracked specimens and maintaining <i>K</i> at less than <i>K</i><sub>ISCC</sub> provided an opportunity to study crack initiation on the surface of the specimen under plane stress conditions in the presence of a pre-existing crack. In the present work, the effects of cyclic loading characteristics on crack growth behavior during Stage 1b were studied. It was observed that the pre-existing cracks during Stage 1b led to the initiation of secondary cracks. The initiation of the secondary cracks at the crack tip depended on loading characteristics, <i>i.e</i>., the amplitude and frequency of load fluctuations. The secondary cracks at the crack tip can be classified into four categories based on their positions with respect to the primary crack. A high density of intergranular cracks formed in the cyclic plastic zone generated by low R-ratio cycles. The higher the frequency of the low <i>R</i>-ratio cycles, the higher the density of the intergranular cracks forming in the cyclic plastic zone. The crack growth rate increased with an increase in either the amplitude or the frequency of the load fluctuations. The minimum and maximum crack growth rates were 8×10<sup>-9</sup> mm/s and 4.2×10<sup>-7</sup> mm/s, respectively, with <i>R</i>-ratio varying between 0.2 and 0.9, frequency varying between 10<sup>-4</sup> Hz and 5×10<sup>-2</sup> Hz, and at a fixed stress intensity factor of 15 MPa.m<sup>0.5</sup>. It was found that avoiding rapid and large load fluctuations slowed down crack geometry evolution and delayed onset of Stage 2. The implication of these results for pipeline operators is that reducing internal pressure fluctuations by reducing the frequency and/or amplitude of the fluctuations can expand Stage 1 and increase the reliable lifetime of operating pipelines.


Sign in / Sign up

Export Citation Format

Share Document