load point
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4514
Author(s):  
Vincent Becker ◽  
Thilo Schwamm ◽  
Sven Urschel ◽  
Jose Alfonso Antonino-Daviu

The growing number of variable speed drives (VSDs) in industry has an impact on the future development of condition monitoring methods. In research, more and more attention is being paid to condition monitoring based on motor current evaluation. However, there are currently only a few contributions to current-based pump diagnosis. In this paper, two current-based methods for the detection of bearing defects, impeller clogging, and cracked impellers are presented. The first approach, load point-dependent fault indicator analysis (LoPoFIA), is an approach that was derived from motor current signature analysis (MCSA). Compared to MCSA, the novelty of LoPoFIA is that only amplitudes at typical fault frequencies in the current spectrum are considered as a function of the hydraulic load point. The second approach is advanced transient current signature analysis (ATCSA), which represents a time-frequency analysis of a current signal during start-up. According to the literature, ATCSA is mainly used for motor diagnosis. As a test item, a VSD-driven circulation pump was measured in a pump test bench. Compared to MCSA, both LoPoFIA and ATCSA showed improvements in terms of minimizing false alarms. However, LoPoFIA simplifies the separation of bearing defects and impeller defects, as impeller defects especially influence higher flow ranges. Compared to LoPoFIA, ATCSA represents a more efficient method in terms of minimizing measurement effort. In summary, both LoPoFIA and ATCSA provide important insights into the behavior of faulty pumps and can be advantageous compared to MCSA in terms of false alarms and fault separation.


In this paper the reliability indices are calculated for radial distribution network is improved by placing isolators. Isolators placed at near the tee section of the main radial distribution network used as protection for the load points under abnormal conditions. A seven load point distribution radial network is used to study without isolators and with isolators. Reliability indices evaluated and compared for radial network with isolators and without isolators.


2020 ◽  
Vol 191 ◽  
pp. 04003
Author(s):  
Danting Cao ◽  
Jonathan Lerch ◽  
Daniel Stetter ◽  
Martin Neuburger ◽  
Ralf Wörner

From the customer's perspective, the appeal of electric vehicles depends on the simplicity and ease of their use, such as flexible access to electric power from the grid to recharge the batteries of their vehicles. Therefore, the expansion of charging infrastructure will be an important part of electric mobility. The related charging infrastructure is a big challenge for the load capacity of the grid connection without additional intelligent charge management: if the control of the charging process is not implemented, it is necessary to ensure the total of the maximum output of all xEVs at the grid connection point, which requires huge costs. This paper proposes to build a prediction module for forecasting dynamic charging load using machine learning (ML) techniques. The module will be integrated into a real charge management concept with optimization procedures for controlling the dynamic load point. The value of load forecasting through practical load data of a car park were taken to illustrate the proposed methods. The prediction performance of different ML methods under the same data condition (e.g., holiday data) are compared and evaluated.


Sign in / Sign up

Export Citation Format

Share Document