auxetic materials
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 37)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 58 (4) ◽  
pp. 94-101
Author(s):  
Oana Alexandra Mocian ◽  
Dan Mihai Constantinescu ◽  
Florin Baciu ◽  
Andrei Indres

Architectured structures, particularly auxetic materials, have demonstrated encouraging applications in energy absorption as they facilitate the customization of their structural response. Specific geometries of unit cells can thus be tailored for particular needs due to recent progress in additive manufacturing techniques. This paper experimentally studies how the grading of the cell unit angle of an auxetic core in a sandwich panel affects its energy absorbing capability and structural response. 3D printed sandwich panels with uniform and graded auxetic cellular core were tested under quasistatic compression. The results show that sandwich panels with graded core exhibit much better energy absorption capabilities with higher plateau stress and densification strain. This indicates that, by appropriately controlling its geometry, auxetic structures can show further potential as core in sandwich panels for energy absorption applications.


Nanoscale ◽  
2022 ◽  
Author(s):  
Zishuang Cheng ◽  
Xiaoming Zhang ◽  
Hui Zhang ◽  
Heyan Liu ◽  
Xiao Yu ◽  
...  

Since the discovery of penta-graphene, two-dimensional (2-D) pentagonal-structured materials have been highly expected for desirable performance because of their unique structures and accompanied physical properties. Hence, based on the first-principles...


2022 ◽  
Vol 73 ◽  
pp. 633-641
Author(s):  
Jungsub Kim ◽  
Himanshu Hegde ◽  
Hyo-young Kim ◽  
ChaBum Lee

Author(s):  
Ankan Narayan Biswas ◽  
Nunna Mahesh ◽  
Shanmukha Ram Peri ◽  
Bharath R Krishnan ◽  
P.S. Rama Sreekanth

2021 ◽  
Vol 04 ◽  
Author(s):  
Ouassim Hamdi ◽  
Denis Rodrigue

: Auxetic materials have high potential due to their exceptional properties resulting from their negative Poisson ratio. Recently, several auxetic polymer-based materials have been developed. In fact, several applications are looking for a lightweight (less material consumed in production and transport) while having high mechanical performances (impact absorption, rigidity, strength, resistance, etc.). So, a balance between density and toughness/strength is of high importance, especially for military, sporting, and transport applications. So auxetic materials (especially foams) can provide high impact protection while limiting the material’s weight. This article presents a review of recent advances with a focus on auxetic polymers, with particular emphasis on the auxetic polymer foams in terms of their fabrication methods and processing conditions (depending on the nature of the cellular structure), the effect of the fabrication parameters on their final properties, as well as their models and potential applications.


2021 ◽  
pp. 004051752110505
Author(s):  
Qiaoli Xu ◽  
Longxin Gu ◽  
Gui Liu ◽  
Zhuoran Liu ◽  
Dongdong Lu ◽  
...  

The metamaterials with negative Poisson’s ratio are called auxetic materials, which as a branch of metamaterials has drawn a lot of attention in many areas. Existing auxetic knitting textiles combine flexibility and auxeticity, however the loose structure has been a main disadvantage for its application. In this study, we fabricated Miura origami structure fabrics by weaving technology in order to acquire more stable auxetic textiles. The results show that using the combination of fabric structure type and elastic yarns, an origami structure can be realized in a jacquard loom. In the Miura origami structure, the crease pattern can be separated into three parts, unfolding areas, convex areas, and concave areas. One warp system and two weft systems are compounded together, in which a weft backed weave is used to get elastic floats in the convex and concave areas, and to make the fabrics bend to the concave side. The physical map showed that the fabrics had a clear Miura origami structure and the unfolding areas were flat and even. On the basis of the designed geometric pattern, weft backed weaves can be used to construct different folded areas, spandex wrapped PET (Polyester) and inelastic PET are selected as two weft systems for weaving. Meanwhile, the Miura origami fabrics exhibit distinct in-plane negative Poisson’s ratio and out-of-plane positive Poisson’s ratio. Apart from the Miura origami structure, other origami and paper-cut structures can be realized using this method, and these special auxetic textiles have potential in protective cloths, ornamented textiles, wearable devices, and flexible sensors.


Author(s):  
Md. Khalilur Rahman Khan ◽  
◽  
Abu Bakr Siddique ◽  
Hosne Ara Begum ◽  
◽  
...  

The mechanical behaviour of auxetic materials and structures is the most distinctive characteristic, which differs from that of conventional engineering materials due to the negative Poisson’s ratio. Auxetic materials have the fascinating feature of widening when stretched and contracting when compressed. In recent times, the research of auxetic materials based on textile structures has received a lot of interest. Auxetic effect development at the yarn phase is a new and exciting field of study. Many researchers already developed different types of auxetic yarns, such as the helical auxetic yarn, the plied auxetic yarn, the semi-auxetic yarn etc. The helical auxetic yarn (HAY) is the most commonly mentioned auxetic yarn. It is made up of a rigid wrap and an elastic core yarn. However, it is interesting that auxetic yarns can be produced from conventional non-auxetic fibres through the conventional spinning system as well. The helical auxetic yarn is a new type of yarn with a wide variety of possible applications. Moreover, pore-opening characteristics of auxetic yarns make it a potential candidate in the fields of technical textiles, such as medical textiles, filter application, protective textiles etc. Fabrication of auxetic textiles by utilizing auxetic yarns through simple weaving and knitting technology opens the door to new applications. The aim of this paper is to address the fundamentals of auxetic yarns, such as structure, shortcomings, production techniques, as well as the influencing process parameters. From various research works, it is evident that the wrap helical angle, the core/wrap diameter ratio, and the initial moduli of wrap component are the most vital processing parameters during the production of auxetic yarns. Finally, some potential application areas and challenges of auxetic yarns are also addressed briefly in this paper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Steed ◽  
Eyal Ofek ◽  
Mike Sinclair ◽  
Mar Gonzalez-Franco

AbstractShape displays enable people to touch simulated surfaces. A common architecture of such devices uses a mechatronic pin-matrix. Besides their complexity and high cost, these matrix displays suffer from sharp edges due to the discreet representation which reduces their ability to render a large continuous surface when sliding the hand. We propose using an engineered auxetic material actuated by a smaller number of motors. The material bends in multiple directions, feeling smooth and rigid to touch. A prototype implementation uses nine actuators on a 220 mm square section of material. It can display a range of surface curvatures under the palm of a user without aliased edges. In this work we use an auxetic skeleton to provide rigidity on a soft material and demonstrate the potential of this class of surface through user experiments.


2021 ◽  
Author(s):  
Deepak Kumar Pokkalla

Auxetic materials with negative Poisson’s ratio have potential applications across a broad range of engineering fields. Several design techniques have been developed to obtain auxetics with targeted mechanical properties. However, many of these finite element based techniques are difficult to use directly for auxetics, particularly during the design optimization stage which involves evolving boundary parts with large curvatures. This paper focusses on a series of smoothed petal auxetics, with lower stress concentrations at connecting parts, compared to the reference star shaped structures. An isogeometric shape optimization framework to achieve target Poisson’s ratios at large deformation is presented. Several smoothed petal auxetic designs with target constant Poisson’s ratios up to an effective tensile strain of 30% are shown to demonstrate the capability of the optimization framework.


Sign in / Sign up

Export Citation Format

Share Document