Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

2008 ◽  
Vol 50 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Yu Jian-Ping ◽  
Sun Yong-Li
2011 ◽  
Vol 25 (14) ◽  
pp. 1931-1939 ◽  
Author(s):  
LIANG-MA SHI ◽  
LING-FENG ZHANG ◽  
HAO MENG ◽  
HONG-WEI ZHAO ◽  
SHI-PING ZHOU

A method for constructing the solutions of nonlinear evolution equations by using the Weierstrass elliptic function and its first-order derivative was presented. This technique was then applied to Burgers and Klein–Gordon equations which showed its efficiency and validality for exactly some solving nonlinear evolution equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ali Filiz ◽  
Mehmet Ekici ◽  
Abdullah Sonmezoglu

F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulusmof Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.


2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fan Niu ◽  
Jianming Qi ◽  
Zhiyong Zhou

Finding exact solutions of nonlinear equations plays an important role in nonlinear science, especially in engineering and mathematical physics. In this paper, we employed the complex method to get eight exact solutions of the modified BBM equation for the first time, including two elliptic function solutions, two simply periodic solutions, and four rational function solutions. We used the exp − ϕ z -expansion methods to get fourteen forms of solutions of the modified BBM equation. We also used the sine-cosine method to obtain eight styles’ exact solutions of the modified BBM equation. Only the complex method can obtain elliptic function solutions. We believe that the complex method presented in this paper can be more effectively applied to seek solutions of other nonlinear evolution equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Peng Guo ◽  
Xiang Wu ◽  
Liangbi Wang

The nonlinear wave equation of an elastic rod under finite deformation is solved by the extended mapping method. Abundant new exact traveling wave solutions for this equation are obtained, which contain trigonometric function solutions, solitary wave solutions, Jacobian elliptic function solutions, and Weierstrass elliptic function solutions. The method can be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics.


2004 ◽  
Vol 59 (9) ◽  
pp. 529-536 ◽  
Author(s):  
Yong Chen ◽  
Qi Wang ◽  
Biao Lic

A new Jacobi elliptic function rational expansion method is presented by means of a new general ansatz and is very powerful, with aid of symbolic computation, to uniformly construct more new exact doubly-periodic solutions in terms of rational form Jacobi elliptic function of nonlinear evolution equations (NLEEs). We choose a (2+1)-dimensional dispersive long wave equation to illustrate the method. As a result, we obtain the solutions found by most existing Jacobi elliptic function expansion methods and find other new and more general solutions at the same time. When the modulus of the Jacobi elliptic functions m→1 or 0, the corresponding solitary wave solutions and trigonometric function (singly periodic) solutions are also found.


Sign in / Sign up

Export Citation Format

Share Document