scholarly journals New Solutions of Elastic Waves in an Elastic Rod under Finite Deformation

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Peng Guo ◽  
Xiang Wu ◽  
Liangbi Wang

The nonlinear wave equation of an elastic rod under finite deformation is solved by the extended mapping method. Abundant new exact traveling wave solutions for this equation are obtained, which contain trigonometric function solutions, solitary wave solutions, Jacobian elliptic function solutions, and Weierstrass elliptic function solutions. The method can be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics.

2011 ◽  
Vol 25 (02) ◽  
pp. 319-327 ◽  
Author(s):  
CHENG-JIE BAI ◽  
HONG ZHAO ◽  
HENG-YING XU ◽  
XIA ZHANG

The deformation mapping method is extended to solve a class of nonlinear evolution equations (NLEEs). Many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, and Jacobian elliptic function solutions, are obtained by a simple algebraic transformation relation between the solutions of the NLEEs and those of the cubic nonlinear Klein–Gordon (NKG) equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yinghui He ◽  
Shaolin Li ◽  
Yao Long

This paper is concerned with a double nonlinear dispersive equation: the Sharma-Tasso-Olver equation. We propose an improvedG′/G-expansion method which is employed to investigate the solitary and periodic traveling waves of this equation. As a result, some new traveling wave solutions involving hyperbolic functions, the trigonometric functions, are obtained. When the parameters are taken as special values, the solitary wave solutions are derived from the hyperbolic function solutions, and the periodic wave solutions are derived from the trigonometric function solutions. The improvedG′/G-expansion method is straightforward, concise and effective and can be applied to other nonlinear evolution equations in mathematical physics.


2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2021 ◽  
pp. 2150417
Author(s):  
Kalim U. Tariq ◽  
Mostafa M. A. Khater ◽  
Muhammad Younis

In this paper, some new traveling wave solutions to the conformable time-fractional Wu–Zhang system are constructed with the help of the extended Fan sub-equation method. The conformable fractional derivative is employed to transform the fractional form of the system into ordinary differential system with an integer order. Some distinct types of figures are sketched to illustrate the physical behavior of the obtained solutions. The power and effective of the used method is shown and its ability for applying different forms of nonlinear evolution equations is also verified.


2011 ◽  
Vol 25 (14) ◽  
pp. 1931-1939 ◽  
Author(s):  
LIANG-MA SHI ◽  
LING-FENG ZHANG ◽  
HAO MENG ◽  
HONG-WEI ZHAO ◽  
SHI-PING ZHOU

A method for constructing the solutions of nonlinear evolution equations by using the Weierstrass elliptic function and its first-order derivative was presented. This technique was then applied to Burgers and Klein–Gordon equations which showed its efficiency and validality for exactly some solving nonlinear evolution equations.


2015 ◽  
Vol 54 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Rafiqul Islam ◽  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Md. Ekramul Islam ◽  
Md. Tanjir Ahmed

Sign in / Sign up

Export Citation Format

Share Document