scholarly journals Group-invariant solutions of the (2+1)-dimensional cubic Schrödinger equation

2006 ◽  
Vol 39 (12) ◽  
pp. 2973-2993 ◽  
Author(s):  
C Özemir ◽  
F Güngör



2014 ◽  
Vol 69 (8-9) ◽  
pp. 489-496 ◽  
Author(s):  
Mir Sajjad Hashemi ◽  
Ali Haji-Badali ◽  
Parisa Vafadar

In this paper, we utilize the Lie symmetry analysis method to calculate new solutions for the Fornberg-Whitham equation (FWE). Applying a reduction method introduced by M. C. Nucci, exact solutions and first integrals of reduced ordinary differential equations (ODEs) are considered. Nonlinear self-adjointness of the FWE is proved and conserved vectors are computed



2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Gülden Gün ◽  
Teoman Özer

We analyze Noether and -symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach. For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries we investigate -symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to determine the new forms of -symmetries. Finally, we compare the results obtained from different classifications.



2015 ◽  
Vol 58 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Seckin Demirbas

AbstractIn a previous paper, we proved that the 1-d periodic fractional Schrödinger equation with cubic nonlinearity is locally well-posed inHsfors> 1 −α/2 and globally well-posed fors> 10α− 1/12. In this paper we define an invariant probability measureμonHsfors<α− 1/2, so that for any ∊ > 0 there is a set Ω ⊂Hssuch thatμ(Ωc) <∊and the equation is globally well-posed for initial data in Ω. We see that this fills the gap between the local well-posedness and the global well-posedness range in an almost sure sense forin an almost sure sense.



Sign in / Sign up

Export Citation Format

Share Document