Absolute differential sea level muon spectra at zenith angles 45 degrees W and 60 degrees W near the geomagnetic equator

1974 ◽  
Vol 7 (1) ◽  
pp. 158-166 ◽  
Author(s):  
D P Bhattacharyya
1978 ◽  
Vol 31 (5) ◽  
pp. 451 ◽  
Author(s):  
DP Bhattacharyya

A study is made of the influence of long-term solar modulation on the low energy sea level muon spectrum near the geomagnetic equator. Recent experimental data are compared with theoretical results calculated from the phenomenological model of Allkofer and Dau. It is suggested that the observed enhancement in the muon intensity is mainly due to a shift in the solar potential.


1956 ◽  
Vol 34 (9) ◽  
pp. 968-984 ◽  
Author(s):  
D. C. Rose ◽  
K. B. Fenton ◽  
J. Katzman ◽  
J. A. Simpson

Results are presented of cosmic ray measurements taken at sea level during 1954–55 from the Arctic to the Antarctic. The equipment consisted of a neutron monitor and a meson telescope. Latitude effects of 1.77 for the nucleonic component and 1.15 for the meson component were measured. The longitude effect at the equator was much less than expected on the basis of the geomagnetic eccentric dipole and the longitude effect at intermediate northern latitudes shows that the longitude of the effective eccentric dipole is considerably west of that of the geomagnetic eccentric dipole. In a previous paper by the same authors, the positions of the equatorial minima were combined with other published cosmic ray measurements to calculate a new cosmic ray geomagnetic equator. In this paper new coordinates are derived on the assumption that these equatorial coordinates apply to a new eccentric dipole, and, therefore, that the equatorial coordinates may be extended to high latitudes. When the complete results are plotted on these coordinates, it is found that an eccentric dipole representation of the earth's magnetic field is inconsistent with the combined observations at all latitudes.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


10.1029/ft354 ◽  
1989 ◽  
Author(s):  
John M. Dennison ◽  
Edwin J. Anderson ◽  
Jack D. Beuthin ◽  
Edward Cotter ◽  
Richard J. Diecchio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document