scholarly journals Effect of Solar Modulation on the Low Energy Sea Level Muon Spectrum Near the Geomagnetic Equator

1978 ◽  
Vol 31 (5) ◽  
pp. 451 ◽  
Author(s):  
DP Bhattacharyya

A study is made of the influence of long-term solar modulation on the low energy sea level muon spectrum near the geomagnetic equator. Recent experimental data are compared with theoretical results calculated from the phenomenological model of Allkofer and Dau. It is suggested that the observed enhancement in the muon intensity is mainly due to a shift in the solar potential.

2021 ◽  
Author(s):  
Nestor Cerpa ◽  
Diane Arcay ◽  
José Alberto Padrón-Navarta

<p>The water exchange between the Earth’s surface and the deep interior is a prime process for the geochemical evolution of our planet and its dynamics. The degassing of water from the mantle takes place through volcanism whereas mantle regassing occurs through the subduction of H<sub>2</sub>O chemically bound to hydrous minerals. The (im)balance between degassing and regassing controls the budget of surficial liquid water over geological timescales, i.e, the long-term global sea level. Continental freeboard constraints show that the mean-sea level has remained relatively constant in the last 540 Ma (changes less than about 100 m), thus suggesting a limited imbalance. However, thermopetrological models of water fluxes at present-day subduction zones predict that regassing exceeds degassing by about 50% which, if extrapolated to the past, would have induced a drop inconsistent with the estimations of the long-term sea-level. We have made the case that these inconsistencies arise from thermodynamic predictions for the hydrated lithospheric mantle mineralogy that are poorly constrained at a high pressure (P) and temperature (T). In our study, we thus have revised the global-water flux calculations in subduction zones using petrological constraints on post-antigorite assemblages from recent laboratory experimental data on natural peridotites under high-PT conditions [e.g. Maurice et al, 2018].</p><p>We model the thermal state of all present-day mature subduction zones along with petrological modeling using the thermodynamic code Perple_X and the most updated version of the thermodynamic database of Holland and Powell [2011]. For the modeling of peridotite, we build a hybrid phase diagram that combines thermodynamic calculations at moderate PT and experimental data at high PT (> 6 GPa- 600˚C). Our updated thermopetrological model reveals that the hydrated mantle efficiently dehydrates upon the breakdown of the hydrous aluminous-phase E before reaching 250 km in all but the coldest subduction zones. Further subducting slab dehydration is expected between 300-350 km depths, regardless of its thermal state, as a result of lawsonite breakdown in the gabbroic crust. Overall, we predict that present-day global water retention in subducting plates beyond a depth of 350 km barely exceeds the estimations of mantle degassing for average thicknesses of subducting serpentinized mantle subducting at the trenches of up to 6 km. Finally, our models quantitatively support the steady-state sea level scenario over geological times.</p><p> </p><p>Maurice, J., Bolfan-Casanova, N., Padrón-Navarta, J. A., Manthilake, G., Hammouda, T., Hénot, J. M., & Andrault, D. (2018). The stability of hydrous phases beyond antigorite breakdown for a magnetite-bearing natural serpentinite between 6.5 and 11 GPa. <em>Contributions to Mineralogy and Petrology</em>, 173(10), 86.</p><p>Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. <em>Journal of Metamorphic Geology</em>, 29(3), 333-383.</p>


1976 ◽  
Vol 54 (18) ◽  
pp. 1880-1883 ◽  
Author(s):  
Deba Prasad Bhattacharyya

The pion and kaon spectra in the top of the atmosphere have been derived from the satellite data of cosmic ray nucleons by using the Bose-type distribution of secondary mesons produced in the inclusive reactions p + p → π− + X and p + p → K− + X. The derived pion and kaon spectra follow the relations of the form π(Eπ) dEπ = 0.184Eπ−2.6 dEπ and K(Ek) dEk = 0.036 Ek−2.6 dEk. With the help of the diffusion equation for pions and kaons in the atmosphere, the sea level muon spectrum has been derived and the results have been compared with the magnetic spectrograph data of Allkofer, Carstensen, and Dau in the muon momentum range 15–1000 GeV/c. The sea level muon intensity arising from kaon parentage increases with energy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ning Su ◽  
Yuanyuan Liu ◽  
Li Wang ◽  
Bin Wu ◽  
Jianping Cheng

Cosmic-ray muons are a type of natural radiation with high energy and a strong penetration ability. The flux distribution of such particles at sea level is a key problem in many areas, especially in the field of muon imaging and low background experiments. This paper summarizes the existing models to describe sea-level muon flux distributions. According to different means used, four parametric analytical models and one Monte Carlo model, which is referred to as CRY, are selected as typical sea-level muon flux distribution models. Then, the theoretical values of sea-level muon fluxes given by these models are compared with the experimental sea-level muon differential flux data with kinetic energy values in the range of 1–1,000 GeV in the directions of zenith angles 0° and 75°. The goodness of fit of these models to the experimental data was quantitatively calculated by Pearson’s chi-square test. The results of the comparison show that the commonly used Gaisser model overestimates the muon flux in the low-energy region, while the muon flux given by the Monte Carlo model CRY at the large zenith angle of 75° is significantly lower than that of the experimental data. The muon flux distribution given by the other three parametric analytical models is consistent with the experimental data. The results indicate that the original Gaisser model is invalid in the low energy range, and CRY apparently deviates at large zenith angles. These two models can be substituted with the muon flux models given by Gaisser/Tang, Bugaev/Reyna, and Smith and Duller/Chatzidakis according to actual experimental conditions.


2004 ◽  
Vol 13 (01) ◽  
pp. 217-224 ◽  
Author(s):  
L. PRÓCHNIAK ◽  
P. RING

We present an attempt to describe low lying quadrupole collective excitations within the frame of the RMF theory. Single particle wavefunctions obtained from the RMF are used to calculate mass parameters in the cranking approximation of the ATDHFB. The general Bohr hamiltonian with the calculated mass parameters yields collective energies and wavefunctions. Theoretical results are compared with the experimental data in the case of the γ soft 110 Ru and 126 Ba nuclei.


1995 ◽  
Vol 10 (06) ◽  
pp. 801-806 ◽  
Author(s):  
U. AGLIETTI

The effective theory for heavy quarks has additional symmetries with respect to QCD, which relate charm and beauty hadron masses. Assuming the spectrum of charmed particles, we predicted in a previous work the masses of some beauty particles. The predictions of the Λb mass, M (Λb) = 5630 MeV , and of the Bs mass, M (Bs) = 5379 MeV , are in agreement with present experimental data. We continue this work using recent experimental data on charm hadron masses. The results are: M (Σb) = 5822±6 MeV , [Formula: see text], M (Ωb) = 6080±7 MeV , [Formula: see text], [Formula: see text], [Formula: see text]. When experimental data for beauty hadron masses are available, a comparison with the theoretical values allows a quantitative estimate of the corrections to the static theory, which contain information on hadron dynamics at low energy.


2003 ◽  
Vol 17 (11) ◽  
pp. 2259-2271
Author(s):  
G. M. BHUIYAN ◽  
MD. SHAHJAHAN ◽  
ISSAM ALI ◽  
S. M. MUJIBUR RAHMAN

The two level tunnelling model is applied to analyze recent experimental data on low temperature thermal conductivity of Cu x Sn 1-x metallic glasses. An extra scattering mechanism due to Rayleigh is introduced to describe three characteristic regions of conductivity. Model parameters are determined using least-squares fitting procedure. Results derived from the parameters allow one to predict several interesting low temperature properties of metallic glasses in particular the characteristic plateau of conductivity. Theoretical results are also compared and contrasted with those of other metallic and non-metallic systems, and both common and uncommon features that exist between them are discussed.


1995 ◽  
Vol 09 (06) ◽  
pp. 307-318
Author(s):  
L. Y. CHEN ◽  
S. C. YING

We present a brief review of a theoretical approach to the diffusion of light adatoms that covers the entire range from the classical regime of thermally activated hopping to the low temperature regime of quantum tunneling between adjacent sites. We compare our theoretical results with recent experimental data for the system H/Ni(100). We also contrast our results with those obtained from the quantum transition state approach.


Sign in / Sign up

Export Citation Format

Share Document