Wave Functions for the Hydrogen Atom in Spheroidal Coordinates I: The Derivation and Properties of the Functions

1958 ◽  
Vol 71 (5) ◽  
pp. 815-827 ◽  
Author(s):  
C A Coulson ◽  
P D Robinson
Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1373
Author(s):  
John Gleason Cramer ◽  
Carver Andress Mead

The Transactional Interpretation of quantum mechanics exploits the intrinsic time-symmetry of wave mechanics to interpret the ψ and ψ* wave functions present in all wave mechanics calculations as representing retarded and advanced waves moving in opposite time directions that form a quantum “handshake” or transaction. This handshake is a 4D standing-wave that builds up across space-time to transfer the conserved quantities of energy, momentum, and angular momentum in an interaction. Here, we derive a two-atom quantum formalism describing a transaction. We show that the bi-directional electromagnetic coupling between atoms can be factored into a matched pair of vector potential Green’s functions: one retarded and one advanced, and that this combination uniquely enforces the conservation of energy in a transaction. Thus factored, the single-electron wave functions of electromagnetically-coupled atoms can be analyzed using Schrödinger’s original wave mechanics. The technique generalizes to any number of electromagnetically coupled single-electron states—no higher-dimensional space is needed. Using this technique, we show a worked example of the transfer of energy from a hydrogen atom in an excited state to a nearby hydrogen atom in its ground state. It is seen that the initial exchange creates a dynamically unstable situation that avalanches to the completed transaction, demonstrating that wave function collapse, considered mysterious in the literature, can be implemented with solutions of Schrödinger’s original wave mechanics, coupled by this unique combination of retarded/advanced vector potentials, without the introduction of any additional mechanism or formalism. We also analyze a simplified version of the photon-splitting and Freedman–Clauser three-electron experiments and show that their results can be predicted by this formalism.


2013 ◽  
Vol 28 (18) ◽  
pp. 1350079 ◽  
Author(s):  
A. BENCHIKHA ◽  
L. CHETOUANI

The problem of normalization related to energy-dependent potentials is examined in the context of the path integral approach, and a justification is given. As examples, the harmonic oscillator and the hydrogen atom (radial) where, respectively the frequency and the Coulomb's constant depend on energy, are considered and their propagators determined. From their spectral decomposition, we have found that the wave functions extracted are correctly normalized.


2003 ◽  
Vol 81 (11) ◽  
pp. 1243-1248 ◽  
Author(s):  
Y P Varshni

A hydrogen atom in a high-density plasma is simulated by a model in which the hydrogen atom is confined in an impenetrable spherical box, with the atom at the centre. For the proton–electron interaction the Debye–Huckel potential is used. Variational wave functions are proposed for the 1s and 2p states. Energies calculated from these for different values of the radius of box (r0) are shown to be in good agreement with the exact values. The variational wave functions are further employed to calculate the absorption oscillator strength for the 1s [Formula: see text] 2p transition and the dipole polarizability for different values of r0. PACS Nos.: 03.65.Ge, 32.70.Os, 31.70.Dk, 52.20.–j


2011 ◽  
Vol 63 (1) ◽  
pp. 81-87 ◽  
Author(s):  
T. Kereselidze ◽  
Z. S. Machavariani ◽  
G. Chkadua

Sign in / Sign up

Export Citation Format

Share Document