Phase behaviour of model fluids interacting through short-range forces

2002 ◽  
Vol 14 (9) ◽  
pp. 2181-2191 ◽  
Author(s):  
D Costa ◽  
C Caccamo ◽  
M C Abramo
2021 ◽  
Vol 9 ◽  
Author(s):  
I. Nezbeda

Dipolar versions of two qualitatively different types of simple short range model fluids which exhibit the phenomenon of hydrogen bonding and which could thus serve as a reference in equations of state for associating fluids have been considered: the primitive model of water descending from the TIP4P model and the fluid of hard tetrahedra. The hydrogen bonding structure exhibited by the latter model results from purely repulsive interactions whereas in the first model the “hydrogen bonding interaction” is explicitly incorporated in the model. Since the water molecules bear a strong dipole moment, the effect of the added dipole-dipole interaction on the structure of the two short-range models is therefore examined considering them both in the full and screened dipole-dipole modifications. It is found that the hydrogen bonding structure in the primitive model resulting from the site-site interactions is so strong that the additional dipole-dipole interaction has only a marginal effect on its structure and contributes thus only to the internal energy. On the contrary, even only a weak dipole-dipole interaction destroys the original hydrogen bonding structure of the hard tetrahedron fluid; to preserve it, a screened dipole-dipole interaction has to be used in the equation of state development.


2017 ◽  
Vol 225 ◽  
pp. 723-729 ◽  
Author(s):  
M. Bárcenas ◽  
V. Castellanos ◽  
Y. Reyes ◽  
G. Odriozola ◽  
P. Orea
Keyword(s):  

The physical properties and the phase behaviour of some nematic liquid crystals are discussed, with emphasis on the influence of short-range antiparallel dipole correlation that occurs in mesogenic compounds with a strong terminal dipole moment. Evidence for this effect, which stems especially from dielectric studies, is summarized. Variations of the dipole correlation with molecular structure can explain the sometimes unexpected phase behaviour and physical properties of these substances. A qualitative model is given in terms of a monomer-dimer equilibrium.


Soft Matter ◽  
2013 ◽  
Vol 9 (42) ◽  
pp. 9977 ◽  
Author(s):  
Kitty van Gruijthuijsen ◽  
Remco Tuinier ◽  
Joseph M. Brader ◽  
Anna Stradner

Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Author(s):  
E.A. Kenik ◽  
T.A. Zagula ◽  
M.K. Miller ◽  
J. Bentley

The state of long-range order (LRO) and short-range order (SRO) in Ni4Mo has been a topic of interest for a considerable time (see Brooks et al.). The SRO is often referred to as 1½0 order from the apparent position of the diffuse maxima in diffraction patterns, which differs from the positions of the LRO (D1a) structure. Various studies have shown that a fully disordered state cannot be retained by quenching, as the atomic arrangements responsible for the 1½0 maxima are present at temperatures above the critical ordering temperature for LRO. Over 20 studies have attempted to identify the atomic arrangements associated with this state of order. A variety of models have been proposed, but no consensus has been reached. It has also been shown that 1 MeV electron irradiation at low temperatures (∼100 K) can produce the disordered phase in Ni4Mo. Transmission electron microscopy (TEM), atom probe field ion microscopy (APFIM), and electron irradiation disordering have been applied in the current study to further the understanding of the ordering processes in Ni4Mo.


Author(s):  
D. Chrétien ◽  
D. Job ◽  
R.H. Wade

Microtubules are filamentary structures found in the cytoplasm of eukaryotic cells, where, together with actin and intermediate filaments, they form the components of the cytoskeleton. They have many functions and show various levels of structural complexity as witnessed by the singlet, doublet and triplet structures involved in the architecture of centrioles, basal bodies, cilia and flagella. The accepted microtubule model consists of a 25 nm diameter hollow tube with a wall made up of 13 paraxial protofilaments (pf). Each pf is a string of aligned tubulin dimers. Some results have suggested that the pfs follow a superhelix. To understand how microtubules function in the cell an accurate model of the surface lattice is one of the requirements. For example the 9x2 architecture of the axoneme will depend on the organisation of its component microtubules. We should also note that microtubules with different numbers of pfs have been observed in thin sections of cellular and of in-vitro material. An outstanding question is how does the surface lattice adjust to these different pf numbers?We have been using cryo-electron microscopy of frozen-hydrated samples to study in-vitro assembled microtubules. The experimental conditions are described in detail in this reference. The results obtained in conjunction with thin sections of similar specimens and with axoneme outer doublet fragments have already allowed us to characterise the image contrast of 13, 14 and 15 pf microtubules on the basis of the measured image widths, of the the image contrast symmetry and of the amplitude and phase behaviour along the equator in the computed Fourier transforms. The contrast variations along individual microtubule images can be interpreted in terms of the geometry of the microtubule surface lattice. We can extend these results and make some reasonable predictions about the probable surface lattices in the case of other pf numbers, see Table 1. Figure 1 shows observed images with which these predictions can be compared.


1969 ◽  
Vol 14 (8) ◽  
pp. 437-438
Author(s):  
CELIA STENDLER LAVATELLI

1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-175-Pr2-178 ◽  
Author(s):  
G. T. Pérez ◽  
F. H. Salas ◽  
R. Morales ◽  
L. M. Álvarez-Prado ◽  
J. M. Alameda

Sign in / Sign up

Export Citation Format

Share Document