How far can colour-hyperfine interactions explain S-wave quarkonium data?

1990 ◽  
Vol 16 (2) ◽  
pp. 185-193 ◽  
Author(s):  
S Chakrabarty ◽  
S Deoghuria
Author(s):  
Guang-Juan Wang ◽  
Lu Meng ◽  
Li-Ye Xiao ◽  
Makoto Oka ◽  
Shi-Lin Zhu

AbstractWe systematically study the mass spectrum and strong decays of the S-wave $${\bar{c}}{\bar{s}} q q$$ c ¯ s ¯ q q states in the compact tetraquark scenario with the quark model. The key ingredients of the model are the Coulomb, the linear confinement, and the hyperfine interactions. The hyperfine potential leads to the mixing between different color configurations, and to the large mass splitting between the two ground states with $$I(J^P)=0(0^+)$$ I ( J P ) = 0 ( 0 + ) and $$I(J^P)=1(0^+)$$ I ( J P ) = 1 ( 0 + ) . We calculate their strong decay amplitudes into the $${\bar{D}}^{(*)}K^{(*)}$$ D ¯ ( ∗ ) K ( ∗ ) channels with the wave functions from the mass spectrum calculation and the quark-interchange method. We examine the interpretation of the recently observed $$X_0(2900)$$ X 0 ( 2900 ) as a tetraquark state. The mass and decay width of the $$I(J^P)=1(0^+)$$ I ( J P ) = 1 ( 0 + ) state are $$M=2941$$ M = 2941 MeV and $$\Gamma _X=26.6$$ Γ X = 26.6 MeV, respectively, which indicates that it might be a good candidate for $$X_0(2900)$$ X 0 ( 2900 ) . Meanwhile, we also obtain an isospin partner state $$I(J^P)=0(0^+)$$ I ( J P ) = 0 ( 0 + ) with $$M=2649$$ M = 2649 MeV and $$\Gamma _{X\rightarrow {\bar{D}} K}=48.1$$ Γ X → D ¯ K = 48.1 MeV, respectively. Future experimental search for X(2649) will be very helpful.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-576-C2-578 ◽  
Author(s):  
B. D. Sawicka ◽  
J. A. Sawicki

1980 ◽  
Vol 41 (C1) ◽  
pp. C1-199-C1-200 ◽  
Author(s):  
St. Japa ◽  
K. Krop ◽  
M. Przybylski

2017 ◽  
pp. 89-94
Author(s):  
Ke Toan Tran ◽  
Thi Thuy Hang Nguyen

Objective: To determine pulmonary vascular resistance (PVR) by echocardiography - Doppler and to find correlation between pulmonary vascular resistance with left ventricular EF, PAPs, TAPSE, tissue S-wave of the tricuspid valve in patients with ischemic heart disease. Subjects and Methods: We studied on 82 patients with ischemic heart disease and EF<40% including 36 females, 46 males. Patients were estimated for pulmonary vascular resistance, EF, PAPs, TAPSE, tissue S-wave of the tricuspid valve by echocardiographyDoppler. Results: 64.6% of patients are increased PVR, average of PVR is 3.91 ± 1.85 Wood units and it is increasing with NYHA severity. There are negative correlations between pulmonary vascular resistance with left ventricular ejection fraction (r = - 0.545; p <0.001), TAPSE index (r= -0.590; p <0.001) and tissue S-wave of the tricuspid valve (r = -0.420; p <0.001); positive correlation with systolic pulmonary artery pressure (r = 0.361, p = 0.001), Conclusions: Increased PVR is the primary mechanism for pulmonary hypertension and right heart failure in patients with left heart disease. Determination of PVR in patients with left ventricular dysfunction by echocardiography is important in clinical practice. Key words: Echocardiography-Doppler; Pulmonary vascular resistance; ischemic heart disease


Sign in / Sign up

Export Citation Format

Share Document