scholarly journals Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

2015 ◽  
Vol 26 (3) ◽  
pp. 035102 ◽  
Author(s):  
M D O'Toole ◽  
L A Marsh ◽  
J L Davidson ◽  
Y M Tan ◽  
D W Armitage ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2765 ◽  
Author(s):  
Ziyi Zhang ◽  
Mohammed Roula ◽  
Richard Dinsdale

Background: Biomass measurement and monitoring is a challenge in a number of biotechnology processes where fast, inexpensive, and non-contact measurement techniques would be of great benefit. Magnetic induction spectroscopy (MIS) is a novel non-destructive and contactless impedance measurement technique with many potential industrial and biomedical applications. The aim of this paper is to use computer modeling and experimental measurements to prove the suitability of the MIS system developed at the University of South Wales for controlled biomass measurements. Methods: The paper reports experimental measurements conducted on saline solutions and yeast suspensions at different concentrations to test the detection performance of the MIS system. The commercial electromagnetic simulation software CST was used to simulate the measurement outcomes with saline solutions and compare them with those of the actual measurements. We adopted two different ways for yeast suspension preparation to assess the system’s sensitivity and accuracy. Results: For saline solutions, the simulation results agree well with the measurement results, and the MIS system was able to distinguish saline solutions at different concentrations even in the small range of 0–1.6 g/L. For yeast suspensions, regardless of the preparation method, the MIS system can reliably distinguish yeast suspensions with lower concentrations 0–20 g/L. The conductivity spectrum of yeast suspensions present excellent separability between different concentrations and dielectric dispersion property at concentrations higher than 100 g/L. Conclusions: The South Wales MIS system can achieve controlled yeast measurements with high sensitivity and stability, and it shows promising potential applications, with further development, for cell biology research where contactless monitoring of cellular density is of relevance.


2013 ◽  
Vol 647 ◽  
pp. 560-565 ◽  
Author(s):  
Qiang Du ◽  
Bao Dong Bai ◽  
Li Ke

Magnetic induction tomography (MIT) is a biologic tomography technology, which is to obtain the conductivity distribution by detecting the data on the boundary of the imaging area based on the eddy current principle. The small impedance difference between biological tissues makes the eddy current weak, and it leads to a direct effect on the biological impedance measurement and imaging sensitivity. A measured data standardization method is presented in this paper for enhancing the measured data sensitivity, and combined with the back-projection reconstruction algorithm to get reconstruction image. It is applied to a variety of measurement and the simulation experiment based on the calculation results of finite-element methods. The reconstructed images indicate that the method can improve the image resolution and sensitivity, and which provides an effective data standardization and reconstruction algorithm for the magnetic induction tomography.


2016 ◽  
Author(s):  
A. J. Jurimah ◽  
Z. Zulkarnay ◽  
B. Ibrahim ◽  
S. Shazwani ◽  
A. R. Mohamad Alif ◽  
...  

2003 ◽  
Vol 48 (s1) ◽  
pp. 328-329
Author(s):  
M. Keppelen ◽  
C.H. Riedel ◽  
O. Dössel

Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
JL Ríos ◽  
G Schinella ◽  
S Mosca ◽  
E Cienfuegos-Jovellanos ◽  
MA Pasamar ◽  
...  

2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


2020 ◽  
pp. 3-7
Author(s):  
Vladlen Ya. Shifrin ◽  
Denis I. Belyakov ◽  
Alexander E. Shilov ◽  
Denis D. Kosenko

The results of works aimed at increasing the level of uniformity of measurements of the magnetic induction of a constant field – the basic value in the field of magnetic measurements. A set of equipment for reproducing a unit of magnetic induction of a constant field in the range of 1–25 mT was created and described. The inclusion of this complex in the State primary standard of units of magnetic induction, magnetic flux, magnetic moment and magnetic induction gradient GET 12-2011 will ensure the reproduction and direct transmission of the unit of permanent magnetic induction in the ranges of not only weak (10–3–1 mT), but medium (1–25 mT) and strong (0.025–1 T) magnetic fields. A quantum cesium magnetometer based on the resolved structure of cesium atoms was created to transmit the unit of magnetic induction to the region of medium fields. The procedure for calculating the frequency conversion coefficients to magnetic induction of the created quantum cesium magnetometer is described. The uncertainty budget for reproducing a unit of magnetic induction of a constant field using the created complex is estimated.


Sign in / Sign up

Export Citation Format

Share Document