Applying multiple-beam Fizeau fringes for measuring the refractive indices of liquids

1996 ◽  
Vol 7 (8) ◽  
pp. 1119-1123 ◽  
Author(s):  
S Y El-Zaiat ◽  
H A El-Hennawi
2007 ◽  
Vol 2 (2) ◽  
pp. 155892500700200
Author(s):  
Hassan Mohamed El-Dessouky ◽  
Ahmed A. Hamza ◽  
Ahmed E. Belal ◽  
T.Z.N. Sokkar ◽  
Khaled M. Yassien

An automated multiple-beam Fizeau fringes in transmission technique was used with a fiber-drawing device to detect necking deformation along polypropylene (PP) fibers axis under different conditions of annealing process. The refractive indices, refractive index profiles and crystallinity were calculated along the annealed PP fibers at different draw ratios. The annealing temperature controls the propagation of necking deformation along PP fibers axis that stretched at low draw ratios (D< 2). The necking deformations along PP fibers axis due to fast drawing process could be avoided when PP fibers were annealed at the temperature of 120°C. Microinterferograms are given for illustrations.


Author(s):  
Mickey E. Gunter ◽  
F. Donald Bloss

A single, reasonably homogeneous, nonopaque 30-to-300 μm crystal, mounted on a spindle stage and studied by immersion methods under a polarizing microscope, yields optical data frequently sufficient to identify and characterize a substance unequivocally. The data obtainable include (1) the orientation of the crystal's principal vibration axes and (2) its principal refractive indices, to within 0.0002 if desired, for light vibrating along these principal vibration axes. Spindle stages tend to be simple and relatively inexpensive, some costing less than $50. They permit rotation of the crystal about a single axis which is parallel to the microscope stage. This spindle or S-axis is thus perpendicular to the M-axis, namely the microscope stage's axis of rotation.A spindle stage excels when studying anisotropic crystals. It orients uniaxial crystals within minutes and biaxial crystals almost as quickly so that their principal refractive indices - ɛ and ω (uniaxial); α, β and γ (biaxial) - can be determined without significant error from crystal misorientation.


Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


1983 ◽  
Vol 44 (12) ◽  
pp. 349-359
Author(s):  
Wataru Kinase ◽  
Tadataka Morishita ◽  
Yutaka Hiyama ◽  
Tomoo Maeda
Keyword(s):  

2019 ◽  
Author(s):  
Chem Int

The physicochemical properties of six imported and one locally produced edible vegetable oils (soybean oil, sunflower oil, sunlit oil, hayat oil, avena oil, USA vegetable oil and Niger oil) purchased from Bahir Dar city, Ethiopia, were examined for their compositional quality. All the oil samples were characterized for specific gravity, moisture content, color, relative viscosity, refractive indices, ash content, peroxide value, saponification value, smoke point, acid value, free fatty acid value and trace metals contents using established methods. The result clearly indicates that some of the oil samples exhibited unacceptable value when compared with physicochemical parameters recommended by the Codex Alimentations Commission of FAO/WHO and the specification of Ethiopian standards. The contents of nickel (Ni), copper (Cu) and iron (Fe) in seven samples were determined using ICP-OES and their concentrations were found in the range of 1.8-20.4, 45.8-82.2 and 136.04-445.0 mg/kg, respectively.


Sign in / Sign up

Export Citation Format

Share Document