Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation

2000 ◽  
Vol 11 (3) ◽  
pp. 173-180 ◽  
Author(s):  
W C D Cheong ◽  
L C Zhang
2012 ◽  
Vol 500 ◽  
pp. 696-701
Author(s):  
Ying Zhu ◽  
Sen Song ◽  
Ling Ling Xie ◽  
Shun He Qi ◽  
Qian Qian Liu

This method of parallel computing into nanoindentation molecular dynamics simulation (MDS), the author uses a nine-node parallel computer and takes the single crystal aluminum as the experimental example, to implement the large-scale process simulation of nanoindentation. Compared the simulation results with experimental results is to verify the reliability of the simulation. The method improves the computational efficiency and shortens the simulation time and the expansion of scale simulation can significantly reduce the impact of boundary conditions, effectively improve the accuracy of the molecular dynamics simulation of nanoindentation.


2012 ◽  
Vol 500 ◽  
pp. 702-706
Author(s):  
Ying Zhu ◽  
Ling Ling Xie ◽  
Sen Song ◽  
Shun Hen Qi ◽  
Qian Qian Liu

The work in the optimization of the simulation of nanoindentation based on the molecular dynamics was mainly introduced in this paper. One optimization method, freeze atoms method was proposed according to the characteristics of nanoindentation process itself, then did the simulation calculation through the use of freeze atoms method and the traditional calculation method, It was found that the difference between simulation results and experimental results of hardness decreased gradually with enlarge the scale of molecular dynamics simulation (with increase of the indentation depth), from 32.39% of 5nm decreased to 14.6% of 25nm. By comparison, it was found that the optimized algorithm could improve the efficiency of simulation in large-scale molecular dynamics simulation., confirmed the correctness and effectiveness of freeze atoms method.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1332
Author(s):  
Artur R. Shugurov ◽  
Alexey V. Panin ◽  
Andrey I. Dmitriev ◽  
Anton Yu. Nikonov

The deformation behaviors of Ti-6Al-4V alloy samples with lamellar and bimodal microstructures under scratch testing were studied experimentally and using molecular dynamics simulation. It was found that the scratch depth in the sample with a bimodal microstructure was twice as shallow as that measured in the sample with a lamellar microstructure. This effect is attributed to the higher hardness of the sample with a bimodal microstructure and the larger amount of elastic recovery of scratch grooves in this sample. On the basis of the results of molecular dynamics simulation, a mechanism was proposed, which associates the recovery of the scratch grooves with the inhomogeneous vanadium distribution in the β-areas. The calculations showed that at a vanadium content typical for Ti-6Al-4V alloy, both the body-centered cubic (BCC) and hexagonal close-packed (HCP) structures can be more energetically favorable depending on the atomic volume. Therefore, compressive or tensile stresses induced by the indenter could facilitate β→α and α→β phase transformations, respectively, in the vanadium-depleted domains of the β-areas, which contribute to the recovery of the Ti-6Al-4V alloy subjected to scratching.


Sign in / Sign up

Export Citation Format

Share Document