Active vibration control of smart hull structure using piezoelectric composite actuators

2009 ◽  
Vol 18 (7) ◽  
pp. 074004 ◽  
Author(s):  
Jung Woo Sohn ◽  
Seung-Bok Choi ◽  
Chul-Hee Lee
2008 ◽  
Vol 47-50 ◽  
pp. 137-140 ◽  
Author(s):  
Jung Woo Sohn ◽  
Seung Bok Choi

In this paper, active vibration control performance of the smart hull structure with Macro-Fiber Composite (MFC) is evaluated. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell-Mushtari shell theory. Subsequently, modal characteristics are investigated and compared with the results obtained from finite element analysis and experiment. The governing equations of vibration control system are then established and expressed in the state space form. Linear Quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and control performances are evaluated.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
S. Raja ◽  
Tadashige Ikeda ◽  
D. Dwarakanathan

The use of surface bonded and embedded piezoelectric composite actuators is examined through a numerical study. Modelling schemes are therefore developed by applying the isoparametric finite element approach to idealise extension-bending and shear-bending couplings due to piezoelectric actuations. A modal control based linear quadratic regulator is employed to perform the active vibration control studies. Influence of shear actuation direction and its width has been examined and interesting deflection patterns are noticed. The through width SAFC develops a constant deflection beyond its length along the laminated plate length. In contrast, segmented SAFC produces a moderate to linearly varying deflection pattern. MFC actuators have shown promising features in vibration control performances. Nevertheless, closed loop damping presents the efficiency of SAFC in the vibration control application. It is therefore envisaged that optimally actuated smart laminates can be designed using MFC and SAFC to efficiently counteract the disturbance forces.


1987 ◽  
Author(s):  
ZORAN MARTINOVIC ◽  
RAPHAEL HAFTKA ◽  
WILLIAM HALLAUER, JR. ◽  
GEORGE SCHAMEL, II

Sign in / Sign up

Export Citation Format

Share Document