scholarly journals Light neutrino mass scale in spectrum of Dirac equation with the 5-form flux term on theAdS(5) ×S(5) background

2009 ◽  
Vol 2009 (08) ◽  
pp. 091-091 ◽  
Author(s):  
Boris L Altshuler
2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Rathin Adhikari ◽  
Arnab Dasgupta

AbstractWe have shown a new scenario of successful leptogenesis with one L violating coupling and a relative Majorana phase playing the role of CP violation. This is in contrast to the usual consideration of Feynman diagram with at least two L violating couplings. We have considered R-parity violating minimal supersymmetric standard model (MSSM) for leptogenesis at TeV scale. This scenario is also consistent with generating light neutrino mass if asymmetry is generated through semileptonic $$\lambda ^{\prime }$$ λ ′ coupling.


2020 ◽  
Vol 811 ◽  
pp. 135933 ◽  
Author(s):  
Debasish Borah ◽  
Satyabrata Mahapatra ◽  
Dibyendu Nanda ◽  
Narendra Sahu

2016 ◽  
Vol 31 (13) ◽  
pp. 1650077 ◽  
Author(s):  
Avtandil Achelashvili ◽  
Zurab Tavartkiladze

Aiming to relate leptonic CP violating phase [Formula: see text] to the cosmological CP asymmetry, we study the extension of MSSM by two quasi-degenerate (strictly degenerate at tree level) right-handed neutrinos and consider all possible two texture zero [Formula: see text] Yukawa matrices plus one [Formula: see text] dimension five [Formula: see text] operator contributing to the light neutrino mass matrix. We classify all experimentally viable mass matrices, leading to several predictions, and analytically derive predictive relations. We also relate the CP violating [Formula: see text] phase to the CP phase of the thermal leptogenesis.


2016 ◽  
Vol 273-275 ◽  
pp. 2687-2689 ◽  
Author(s):  
Darius Jurčiukonis ◽  
Thomas Gajdosik ◽  
Andrius Juodagalvis

2018 ◽  
Vol 2018 ◽  
pp. 1-24
Author(s):  
Madan Singh

We investigate the novel possibilities of hybrid textures comprising a vanishing minor (or element) and two equal elements (or cofactors) in light neutrino mass matrix Mν. Such type of texture structures leads to sixty phenomenological cases each, out of which only fifty-six are viable with texture containing a vanishing minor and an equality between the elements in Mν, while fifty are found to be viable with texture containing a vanishing element and an equality of cofactors in Mν under the current experimental test at 3σ confidence level. Detailed numerical analysis of all the possible cases has been presented.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
E. H. Aeikens ◽  
P. M. Ferreira ◽  
W. Grimus ◽  
D. Jurčiukonis ◽  
L. Lavoura

Abstract We consider the one-loop radiative corrections to the light-neutrino mass matrix and their consequences for the predicted branching ratios of the five lepton-flavour-violating decays $$ {\mathrm{\ell}}_1^{-}\to {\mathrm{\ell}}_2^{-}{\mathrm{\ell}}_3^{+}{\mathrm{\ell}}_3^{-} $$ ℓ 1 − → ℓ 2 − ℓ 3 + ℓ 3 − in a two-Higgs-doublet model furnished with the type-I seesaw mechanism and soft lepton-flavour violation. We find that the radiative corrections are very significant; they may alter the predicted branching ratios by several orders of magnitude and, in particular, they may help explain why BR (μ− → e−e+e−) is strongly suppressed relative to the branching ratios of the decays of the τ−. We conclude that, in any serious numerical assessment of the predictions of this model, it is absolutely necessary to take into account the one-loop radiative corrections to the light-neutrino mass matrix.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Carolina Arbeláez ◽  
Claudio Dib ◽  
Kevin Monsálvez-Pozo ◽  
Iván Schmidt

Abstract We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of MN ≲ MW. Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to opposite-sign dilepton ratio, Rℓℓ, can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular values of Rℓℓ are controlled by the width of the QD neutrino and its mass splitting, the latter being equal to the light-neutrino mass mν in the LSM scenario. The current upper bound on mν1 together with the projected sensitivities of current and future |UN ℓ|2 experimental measurements, set stringent constraints on our low-scale QD mass regime. Some experimental prospects of testing the model by LHC displaced vertex searches are also discussed.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Miguel Escudero ◽  
Jacobo Lopez-Pavon ◽  
Nuria Rius ◽  
Stefan Sandner

Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (ΛCDM), the Planck collaboration reports ∑mv< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe τν ≲ tU, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state ν4 and a Goldstone boson ϕ, in which νi→ ν4ϕ decays can loosen the neutrino mass bounds up to ∑mv ∼ 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)μ−τ flavor symmetry, which are otherwise in tension with the current bound on ∑mv.


Sign in / Sign up

Export Citation Format

Share Document