scholarly journals Multi-band gravitational wave tests of general relativity

2019 ◽  
Vol 37 (2) ◽  
pp. 02LT01 ◽  
Author(s):  
Zack Carson ◽  
Kent Yagi
Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 5 ◽  
Author(s):  
Zack Carson ◽  
Kent Yagi

Gravitational wave observations offer unique opportunities to probe gravity in the strong and dynamical regime, which was difficult to access previously. We here review two theory-agnostic ways to carry out tests of general relativity with gravitational waves, namely (i) parameterized waveform tests and (ii) consistency tests between the inspiral and merger-ringdown portions. For each method, we explain the formalism, followed by results from existing events, and finally we discuss future prospects with upgraded detectors, including the possibility of using multi-band gravitational-wave observations with ground-based and space-borne interferometers. We show that such future observations have the potential to improve upon current bounds on theories beyond general relativity by many orders of magnitude. We conclude by listing several open questions that remain to be addressed.


2009 ◽  
Vol 5 (S261) ◽  
pp. 198-199
Author(s):  
Clifford M. Will

AbstractWe review the experimental evidence for Einstein's general relativity. A variety of high precision null experiments confirm the Einstein Equivalence Principle, which underlies the concept that gravitation is synonymous with spacetime geometry, and must be described by a metric theory. Solar system experiments that test the weak-field, post-Newtonian limit of metric theories strongly favor general relativity. Binary pulsars test gravitational-wave damping and aspects of strong-field general relativity. During the coming decades, tests of general relativity in new regimes may be possible. Laser interferometric gravitational-wave observatories on Earth and in space may provide new tests via precise measurements of the properties of gravitational waves. Future efforts using X-ray, infrared, gamma-ray and gravitational-wave astronomy may one day test general relativity in the strong-field regime near black holes and neutron stars.


2020 ◽  
Vol 125 (20) ◽  
Author(s):  
Anuradha Gupta ◽  
Sayantani Datta ◽  
Shilpa Kastha ◽  
Ssohrab Borhanian ◽  
K. G. Arun ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. eabc7397
Author(s):  
Salvatore Vitale

Gravitational waves are ripples in spacetime generated by the acceleration of astrophysical objects; a direct consequence of general relativity, they were first directly observed in 2015. Here, I review the first 5 years of gravitational-wave detections. More than 50 gravitational-wave events have been found, emitted by pairs of merging compact objects such as neutron stars and black holes. These signals yield insights into the formation of compact objects and their progenitor stars, enable stringent tests of general relativity, and constrain the behavior of matter at densities higher than that of an atomic nucleus. Mergers that emit both gravitational and electromagnetic waves probe the formation of short gamma-ray bursts and the nucleosynthesis of heavy elements, and they measure the local expansion rate of the Universe.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 497
Author(s):  
N. V. Krishnendu ◽  
Frank Ohme

The detections of gravitational-wave (GW) signals from compact binary coalescence by ground-based detectors have opened up the era of GW astronomy. These observations provide opportunities to test Einstein’s general theory of relativity at the strong-field regime. Here we give a brief overview of the various GW-based tests of General Relativity (GR) performed by the LIGO-Virgo collaboration on the detected GW events to date. After providing details for the tests performed in four categories, we discuss the prospects for each test in the context of future GW detectors. The four categories of tests include the consistency tests, parametrized tests for GW generation and propagation, tests for the merger remnant properties, and GW polarization tests.


2021 ◽  
pp. 2130010
Author(s):  
Maximiliano Isi

The LIGO and Virgo gravitational-wave detectors carried out the first half of their third observing run from April through October 2019. During this period, they detected 39 new signals from the coalescence of black holes or neutron stars, more than quadrupling the total number of detected events. These detections included some unprecedented sources, like a pair of black holes with unequal masses (GW190412), a massive pair of neutron stars (GW190425), a black hole potentially in the supernova pair-instability mass gap (GW190521), and either the lightest black hole or the heaviest neutron star known to date (GW190814). Collectively, the full set of signals provided astrophysically valuable information about the distributions of compact objects and their evolution throughout cosmic history. It also enabled more constraining and diverse tests of general relativity, including new probes of the fundamental nature of black holes. This review summarizes the highlights of these results and their implications.


Sign in / Sign up

Export Citation Format

Share Document