scholarly journals New metric reconstruction scheme for gravitational self-force calculations

Author(s):  
Vahid Toomani ◽  
Peter J Zimmerman ◽  
Andrew Robert Clifford Spiers ◽  
Stefan Hollands ◽  
Adam Pound ◽  
...  

Abstract Inspirals of stellar-mass objects into massive black holes will be important sources for the space-based gravitational-wave detector LISA. Modelling these systems requires calculating the metric perturbation due to a point particle orbiting a Kerr black hole. Currently, the linear perturbation is obtained with a metric reconstruction procedure that puts it in a “no-string” radiation gauge which is singular on a surface surrounding the central black hole. Calculating dynamical quantities in this gauge involves a subtle procedure of “gauge completion” as well as cancellations of very large numbers. The singularities in the gauge also lead to pathological field equations at second perturbative order. In this paper we re-analyze the point-particle problem in Kerr using the corrector-field reconstruction formalism of Green, Hollands, and Zimmerman (GHZ). We clarify the relationship between the GHZ formalism and previous reconstruction methods, showing that it provides a simple formula for the “gauge completion”. We then use it to develop a new method of computing the metric in a more regular gauge: a Teukolsky puncture scheme. This scheme should ameliorate the problem of large cancellations, and by constructing the linear metric perturbation in a sufficiently regular gauge, it should provide a first step toward second-order self-force calculations in Kerr. Our methods are developed in generality in Kerr, but we illustrate some key ideas and demonstrate our puncture scheme in the simple setting of a static particle in Minkowski spacetime.

2018 ◽  
Vol 27 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Pratik Tarafdar ◽  
Tapas K. Das

Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity [Formula: see text] with the Kerr parameter [Formula: see text]. The [Formula: see text]–[Formula: see text] relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the [Formula: see text]–[Formula: see text] relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.


2002 ◽  
Vol 11 (08) ◽  
pp. 1331-1346 ◽  
Author(s):  
CLAUDIA MORENO ◽  
DARÍO NÚÑEZ

We describe the Kerr black hole in the ingoing and outgoing Kerr–Schild horizon penetrating coordinates. Starting from the null vector naturally defined in these coordinates, we construct the null tetrad for each case, as well as the corresponding geometrical quantities allowing us to explicitly derive the field equations for the perturbed scalar projections Ψ0(1) and Ψ4(1) of the Weyl tensor, including arbitrary source terms. This perturbative description, including arbitrary sources, described in horizon penetrating coordinates is desirable in several lines of research on black holes, and contributes to the implementation of a formalism aimed to study the evolution of the spacetime in the region where two black holes are close together.


2016 ◽  
Vol 94 (10) ◽  
Author(s):  
Cesar Merlin ◽  
Amos Ori ◽  
Leor Barack ◽  
Adam Pound ◽  
Maarten van de Meent

Sign in / Sign up

Export Citation Format

Share Document