scholarly journals GRAVITATIONAL PERTURBATIONS OF THE KERR BLACK HOLE DUE TO ARBITRARY SOURCES

2002 ◽  
Vol 11 (08) ◽  
pp. 1331-1346 ◽  
Author(s):  
CLAUDIA MORENO ◽  
DARÍO NÚÑEZ

We describe the Kerr black hole in the ingoing and outgoing Kerr–Schild horizon penetrating coordinates. Starting from the null vector naturally defined in these coordinates, we construct the null tetrad for each case, as well as the corresponding geometrical quantities allowing us to explicitly derive the field equations for the perturbed scalar projections Ψ0(1) and Ψ4(1) of the Weyl tensor, including arbitrary source terms. This perturbative description, including arbitrary sources, described in horizon penetrating coordinates is desirable in several lines of research on black holes, and contributes to the implementation of a formalism aimed to study the evolution of the spacetime in the region where two black holes are close together.

As a preliminary towards a complete integration of the Newman-Penrose equations governing the gravitational perturbations of the Kerr black hole, the perturbations in the spin coefficients and in the components of the Weyl tensor, which vanish in the stationary state, are considered. The manner of treatment of the basic equations yields Teukolsky’s equations expressed directly in terms of the basic derivative operators of the theory and, further, suggests a preferred gauge in which two of the components of the Weyl tensor are governed by the same equations as a Maxwell field. Various identities and relations that are needed in subsequent work are assembled. In two appendixes, the solution of Maxwell’s equations in Kerr geometry and the perturbations of the charged Kerr-Newman black hole are considered.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1578-1582 ◽  
Author(s):  
GUSTAVO DOTTI ◽  
REINALDO J. GLEISER ◽  
JORGE PULLIN ◽  
IGNACIO F. RANEA-SANDOVAL ◽  
HÉCTOR VUCETICH

Metrics representing black holes in General Relativity may exhibit naked singularities for certain values of their parameters. This is the case for super-extremal (J2 > M > 0) Kerr and super-extremal (|Q| > M > 0) Reissner-Nördstrom spacetimes, and also for the negative mass Schwarzschild spacetime. We review our recent work where we show that these nakedly singular spacetimes are unstable under linear gravitational perturbations, a result that supports the cosmic censorship conjecture, and also that the inner stationary region beyond the inner horizon of a Kerr black hole (J2 < M) is linearly unstable.


2000 ◽  
Vol 195 ◽  
pp. 417-418
Author(s):  
S. Nitta

The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes, so-called the “flywheel” (rotation powered) model. The fly-wheel engine of the BH accretion disk system is applied to the statistics of QSOs/AGNs. Nitta, Takahashi, & Tomimatsu clarified the individual evolution of the Kerr black-hole fly-wheel engine, which is parameterized by black-hole mass, initial Kerr parameter, magnetic field near the horizon, and a dimensionless small parameter. We impose a statistical model for the initial mass function of an ensemble of black holes using the Press-Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density (population) of QSOs/AGNs. The result explains well the decrease of very bright QSOs and decrease of population after z ~ 2.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Ángel Rincón ◽  
Victor Santos

AbstractIn this work, we investigate the quasinormal frequencies of a class of regular black hole solutions which generalize Bardeen and Hayward spacetimes. In particular, we analyze scalar, vector and gravitational perturbations of the black hole with the semianalytic WKB method. We analyze in detail the behaviour of the spectrum depending on the parameter p/q of the black hole, the quantum number of angular momentum and the s number. In addition, we compare our results with the classical solution valid for $$p = q = 1$$ p = q = 1 .


2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


1996 ◽  
Vol 05 (06) ◽  
pp. 707-721 ◽  
Author(s):  
I. YA. AREF’EVA ◽  
I.V. VOLOVICH ◽  
K.S. VISWANATHAN

In a series of papers Amati, Ciafaloni and Veneziano and ’t Hooft conjectured that black holes occur in the collision of two light particles at planckian energies. In this talk based on [10] we discuss a possible scenario for such a process by using the Chandrasekhar-Ferrari-Xanthopoulos duality between the Kerr black hole solution and colliding plane gravitational waves.


2008 ◽  
Vol 23 (13) ◽  
pp. 2047-2053 ◽  
Author(s):  
M. R. SETARE

In this paper, we compute the corrections to the Cardy–Verlinde formula of four-dimensional Kerr black hole. These corrections are considered within the context of KKW analysis and arise as a result of the self-gravitational effect. Then we show that one can take into account the semiclassical corrections of the Cardy–Verlinde entropy formula by only redefining the Virasoro operator L0 and the central charge c.


2016 ◽  
Vol 31 (35) ◽  
pp. 1650204
Author(s):  
Soon-Tae Hong

In the presence of a rotating Kerr black hole, we investigate hydrodynamics of the massive particles and massless photons to construct relations among number density, pressure and internal energy density of the massive particles and photons around the rotating Kerr black hole and to study an accretion onto the black hole. On equatorial plane of the Kerr black hole, we investigate the bound orbits of the massive particles and photons around the black hole to produce their radial, azimuthal and precession frequencies. With these frequencies, we study the black holes GRO J1655-40 and 4U 1543-47 to explicitly obtain the radial, azimuthal and precession frequencies of the massive particles in the flow of perfect fluid. We next consider the massive particles in the stable circular orbit of radius of 1.0 ly around the supernovas SN 1979C, SN 1987A and SN 2213-1745 in the Kerr curved spacetime, and around the potential supermassive Schwarzschild black holes M87, NGC 3115, NGC 4594, NGC 3377, NGC 4258, M31, M32 and Galatic center, to estimate their radial and azimuthal frequencies, which are shown to be the same results as those in no precession motion. The photon unstable orbit is also discussed in terms of the impact parameter of the photon trajectory. Finally, on the equatorial plane of the Kerr black hole, we construct the global flat embedding structures possessing (9 + 3) dimensionalities outside and inside the event horizon of the rotating Kerr black hole. Moreover, on the plane, we investigate the warp products of the Kerr spacetime.


Sign in / Sign up

Export Citation Format

Share Document