scholarly journals A higher-multipole gravitational waveform model for an eccentric binary black holes based on the effective-one-body-numerical-relativity formalism

Author(s):  
Xiaolin Liu ◽  
Zhoujian Cao ◽  
Zong-Hong Zhu

Abstract We have previously constructed a waveform model, SEOBNRE, for spinning binary black hole moving along eccentric orbit based on effective-one-body (EOB) formalism. In the current paper, we update SEOBNRE waveform model in the following three respects. Firstly, we update the EOB dynamics from SEOBNRv1 to SEOBNRv4. Secondly we properly treat the Schott term which has been ignored in previous SEOBNRE. Thirdly, we construct a new factorized waveform including (l,|m|)=(2,2),(2,1),(3,3),(4,4) modes based on effective-one-body (EOB) formalism, which is valid for spinning binary black holes (BBH) in general equatorial orbit. Following our previous SEOBNRE waveform model, we call our new waveform model SEOBNREHM. The (l,|m|)=(2,2) mode waveform of SEOBNREHM can fit the original SEOBNRv4 waveform very well in the case of a quasi-circular orbit. We have validated SEOBNREHM waveform model through comparing the waveform against the Simulating eXtreme Spacetimes (SXS) catalog. The comparison is done for BBH with total mass in (20,200)M_sun using Advanced LIGO designed sensitivity. For the quasi-circular cases we have compared our (2,2) mode waveforms to the 281 numerical relativity (NR) simulations of BBH along quasi-circular orbits. All of the matching factors are bigger than 98\%. For the elliptical cases, 24 numerical relativity simulations of BBH along an elliptic orbit are used. For each elliptical BBH system, we compare our modeled gravitational polarizations against the NR results for different combinations of the inclination angle, the initial orbit phase and the source localization in the sky. We use the minimal matching factor respect to the inclination angle, the initial orbit phase and the source localization to quantify the performance of the higher modes waveform. We found that after introducing the higher modes, the minimum of the minimal matching factor among the 24 tested elliptical BBHs increases from 90\% to 98\%. Our SEOBNREHM waveform model can match all tested 305 SXS waveforms better than 98\% including highly spinning ($\chi=0.99$) BBH, highly eccentric ($e\approx0.6$ at reference frequency $Mf_0=0.002$) BBH and large mass ratio ($q=10$) BBH.

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Vijay Varma ◽  
Matthew Mould ◽  
Davide Gerosa ◽  
Mark A. Scheel ◽  
Lawrence E. Kidder ◽  
...  

2007 ◽  
Vol 78 ◽  
pp. 012010 ◽  
Author(s):  
Joan M Centrella ◽  
John G Baker ◽  
William D Boggs ◽  
Bernard J Kelly ◽  
Sean T McWilliams ◽  
...  

2011 ◽  
Vol 20 (10) ◽  
pp. 2081-2086
Author(s):  
BALA R IYER

Over the last decade gravitational waveforms of binary black holes have been investigated using a variety of approaches like the Multipolar post-Minkowskian formalism, Numerical Relativity and the Effective-One-Body method. We review these complementary approaches and summarize the current status of these investigations of relevance to construct the best templates for the next generation Advanced gravitational wave detectors.


2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


2020 ◽  
Vol 495 (1) ◽  
pp. 466-478 ◽  
Author(s):  
Shichao Wu ◽  
Zhoujian Cao ◽  
Zong-Hong Zhu

ABSTRACT In this article, we estimate the eccentricity of 10 binary black holes (BBHs) in the Gravitational-Wave Transient Catalog GWTC-1 by using the inspiral-only BBH waveform template EccentricFD. First, we test our method with simulated eccentric BBHs. Afterwards we apply the method to real BBH gravitational-wave data. We find that the BBHs in GWTC-1, with the exception of GW151226, GW170608 and GW170729, show very small eccentricity. Their upper limits on eccentricity range from 0.033–0.084 with 90 per cent credible interval at a reference frequency of 10 Hz. For GW151226, GW170608 and GW170729, the upper limits are higher than 0.1. The relatively large eccentricity of GW151226 and GW170729 is probably due to ignoring χeff and the low signal-to-noise ratio, and GW170608 is worthy of follow-up research. We also point out the limitations of the inspiral-only non-spinning waveform template in eccentricity measurement. Measurement of BBH eccentricity helps us to understand its formation mechanism. With an increase in the number of BBH gravitational-wave events and a more complete eccentric BBH waveform template, this will become a viable method in the near future.


Sign in / Sign up

Export Citation Format

Share Document